Noname manuscript No.
(will be inserted by the editor)

Combining SAT Solvers with Computer Algebra Systems to
Verify Combinatorial Conjectures

Edward Zulkoski - Curtis Bright - Albert
Heinle - Ilias Kotsireas - Krzysztof Czarnecki -
Vijay Ganesh

the date of receipt and acceptance should be inserted later

Abstract We present a method and an associated system, called MATHCHECK, that
embeds the functionality of a computer algebra system (CAS) within the inner loop of
a conflict-driven clause-learning SAT solver. SAT+CAS systems, a la MATHCHECK,
can be used as an assistant by mathematicians to either find counterexamples or
finitely verify open universal conjectures on any mathematical topic (e.g., graph and
number theory, algebra, geometry, etc.) supported by the underlying CAS. Such a
SAT+CAS system combines the efficient search routines of modern SAT solvers,
with the expressive power of CAS, thus complementing both. The key insight behind

E. Zulkoski

University of Waterloo

200 University Ave. West, Waterloo, Ontario, Canada
E-mail: ezulkosk@gsd.uwaterloo.ca

C. Bright

University of Waterloo

200 University Ave. West, Waterloo, Ontario, Canada
E-mail: cbright@uwaterloo.ca

A. Heinle

University of Waterloo

200 University Ave. West, Waterloo, Ontario, Canada
E-mail: aheinle@uwaterloo.ca

I. Kotsireas

Wilfrid Laurier University

75 University Ave. West, Waterloo, Ontario, Canada
E-mail: ikotsire@wlu.ca

K. Czarnecki

University of Waterloo

200 University Ave. West, Waterloo, Ontario, Canada
E-mail: kczarnec@gsd.uwaterloo.ca

V. Ganesh

University of Waterloo

200 University Ave. West, Waterloo, Ontario, Canada
E-mail: vganesh@uwaterloo.ca

2 Edward Zulkoski et al.

the power of the SAT+CAS combination is that the CAS system can help cut down
the search-space of the SAT solver, by providing learned clauses that encode theory-
specific lemmas, as it searches for a counterexample to the input conjecture (just like
the T in DPLL(T)). In addition, the combination enables a more efficient encoding of
problems than a pure Boolean representation.

In this paper, we leverage the capabilities of several different CAS, namely the
SAGE, MAPLE, and MAGMA systems. As case studies, we study three long-standing
open mathematical conjectures, two from graph theory regarding properties of hyper-
cubes, and one from combinatorics about Hadamard matrices. The first conjecture
states that any matching of any d-dimensional hypercube can be extended to a Hamilto-
nian cycle; the second states that given an edge-antipodal coloring of a hypercube there
always exists a monochromatic path between two antipodal vertices; the third states
that Hadamard matrices exist for all orders divisible by 4. Previous results on the graph
theory conjectures have shown the conjectures true up to certain low-dimensional
hypercubes, and attempts to extend them have failed until now. Using our SAT+CAS
system, MATHCHECK, we extend these two conjectures to higher-dimensional hyper-
cubes. Regarding Hadamard matrices, we demonstrate the advantages of SAT+CAS by
constructing Williamson matrices up to order 42 (equivalently, Hadamard up to order
4-42 = 168), improving the bounds up to which Williamson matrices of even order
have been constructed. Prior state-of-the-art construction was only feasibly performed
for odd numbers, where possible.

1 Introduction

Boolean conflict-driven clause-learning (CDCL) SAT and satisfiability modulo the-
ories (SMT) solvers have become some of the leading tools for solving complex
problems expressed as logical constraints [7]. This is particularly true in software
engineering, broadly construed to include testing, verification, analysis, synthesis,
and security. Modern SMT solvers such as Z3 [15], CVC4 [4], STP [25], and VERIT
[9] contain efficient decision procedures for a variety of first-order theories, such as
uninterpreted functions, quantified linear integer arithmetic, bitvectors, and arrays.
However, even with the expressiveness of SMT, many constraints, particularly ones
stemming from mathematical domains such as graph theory, topology, algebra, or
number theory are non-trivial to solve using today’s state-of-the-art SAT and SMT
solvers.

Computer algebra systems (e.g., MAPLE [11], MATHEMATICA [69], MAGMA [8]
and SAGE [59]), on the other hand, are powerful tools that have been used for decades
by mathematicians to perform symbolic computation over problems in graph theory,
topology, algebra, number theory, etc. However, when applied to prove or disprove
a certain statement, computer algebra systems (CAS) lack the search capabilities of
SAT/SMT solvers, which are a central aspect of the latter tools.

In this paper, we present a method and a prototype tool, called MATHCHECK, that
combines the search capability of SAT solvers with powerful domain knowledge of
CAS systems (i.e., a toolbox of algorithms to solve a broad range of mathematical
problems). The tool MATHCHECK can solve problems that are too difficult or inef-

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 3

ficient to encode as SAT problems. MATHCHECK can be used by mathematicians
to finitely check or find counterexamples to open conjectures. It can also be used by
engineers who want to readily leverage the joint capabilities of both CAS systems and
SAT solvers to model and solve problems that are otherwise too difficult with either
class of tools alone.

The key concept behind MATHCHECK is that it embeds the functionality of
a computer algebra system (CAS) within the inner loop of a CDCL SAT solver.
Computer algebra systems contain state-of-the-art algorithms from a broad range
of mathematical areas, many of which can be used as subroutines to easily encode
predicates relevant both in mathematics and engineering. The users of MATHCHECK
write predicates in the language of the CAS, which then interacts with the SAT solver
through a controlled SAT+CAS interface. The user’s goal is to finitely check or
find counterexamples to a Boolean combination of predicates (somewhat akin to a
quantifier-free SMT formula). The SAT solver searches for counterexamples in the
domain over which the predicates are defined, and invokes the CAS to learn clauses
that help cut down the search space (akin to the “T” in DPLL(T)).

In this work, we focus on constraints from the domain of combinatorics, although
our approach is equally applicable to other areas of mathematics. Constraints in graph
theory such as connectivity, Hamiltonicity, acyclicity, etc. are non-trivial to encode
with standard solvers, and can lend themselves to many possible encodings of widely
ranging performance [64]. The same holds for encoding specifically structured matri-
ces with entries coming from a finite domain. We believe that the method described in
this paper is a step in the right direction towards making SAT/SMT solvers useful to a
broader class of mathematicians and engineers than before.

Most CAS’s additionally support methods for computing symmetries of a group
and automorphisms of graph objects, sometimes via interfacing fast graph automor-
phism tools such as SAUCY [14] or BLISS [37]. Symmetry breaking has been applied
to SAT instances through tools such as SHATTER [1], which converts the conjunctive
normal form (CNF) of the input to a graph automorphism problem that is then solved
with an off-the-shelf tool such as SAUCY. We use these methods to define symmetry
breaking routines for our graph theoretic case studies, which significantly reduce
solving times.

While we believe that our method is probably the first such combination of
SAT+CAS systems, there has been previous work in attempting to extend SAT solvers
with graph reasoning [18,27,58]. These works can loosely be divided into two cate-
gories: constraint-specific extensions, and general graph encodings. As an example of
the first case, efficient SAT-based solvers have been designed to ensure that synthesized
graphs contain no cycles [27]. In [58], Hamiltonicity checks are reduced to native
Boolean cardinality constraints and lazy connectivity constraints. While more efficient
than standard encodings of acyclicity and Hamiltonicity constraints, these approaches
lack generality. On the other hand, approaches such as in CP(Graph) [18], a constraint
satisfaction problem (CSP) solver extension, encode a core set of graph operations
with which complicated predicates (such as Hamiltonicity) can be expressed. Global
constraints [18] can be tailored to handle predicate-specific optimizations. Although it
can be non-trivial to efficiently encode global constraints, previous work has defined
efficient procedures which enforce graph constraints, such as connectivity, incremen-

4 Edward Zulkoski et al.

tally during search [35]. Our approach is more general than the above approaches,
because CAS systems are not restricted to graph theory. One might also consider
a general SMT theory-plugin for graph theory. However given the diverse array of
predicates and functions within the domain, a monolithic theory-plugin (other than a
CAS system) seems impractical at this time.

Prior to our work, the construction of Hadamard matrices [31] was mostly done
via utilizing the power of CAS [40,41,42,49,50]. One could also use SAT solvers to
directly search for Hadamard matrices, but unfortunately SAT solvers perform poorly
over straightforward encodings of the Hadamard problem. For example, experiments
we conducted show that it is very costly to compute Hadamard matrices of order larger
than 20. However, our experiments also showed that SAT solvers scale much better
than CAS when it comes to combinatorial search, while CAS can solve complex set of
constraints that may be difficult or even impossible to encode as a SAT instance. Based
on these observations and using the knowledge obtained from our work on the original
MATHCHECK system [71], we wrote a follow-up tool (called MATHCHECK?2 [10])
specifically designed to construct Hadamard matrices using the Williamson construc-
tion method [68] for circulant matrices. Using this system we provided an independent
verification of a result by Pokovi¢ that there are no Williamson matrices for order
35 [49]. Furthermore, we discovered 885 matrices that were formerly not included in
the comprehensive database of Hadamard matrices in the MAGMA computer algebra
system (ranging with orders up to 4 - 42). We also constructed Williamson matrices for
all even orders up to 42; it should be noted that classical purely CAS driven methods
focused solely on odd orders since additional symmetry results are available in those
cases.

Main Contributions:'

Analysis of a SAT+CAS Combination Method and the MATHCHECK tool. In
Section 3, we present a method and tool that combines a CAS with SAT, denoted as
SAT+CAS, facilitating the creation of user-defined CAS predicates. Such tools can
be used by mathematicians to finitely search or find counterexamples to universal
sentences in the language of the underlying CAS. MATHCHECK allows users to easily
specify and solve complex combinatorial questions using the simple interface provided.
The system can easily be extended to other domains, although we currently focus on
problems coming from graph- and matrix-theory.

Results on Two Open Graph-Theoretic Conjectures over Hypercubes. In Sec-
tion 4, we use our system to extend results on two long-standing open conjectures
related to hypercubes. Conjecture 1 states that any matching of any d-dimensional
hypercube can extend to a Hamiltonian cycle. Conjecture 2 states that given an edge-
antipodal coloring of a hypercube, there always exists a monochromatic path between
two antipodal vertices. Previous results have shown Conjecture 1 (resp. Conjecture 2)
true up to d = 4 [22] (resp. d =5 [21]); we extend these two conjectures to d = 5
(resp. d = 6). We discuss symmetry breaking optimizations, in which we learn many
symmetric clauses during solving, which result in an order of magnitude performance
improvement for MATHCHECK on the two case studies.

1" All code and data is available at https://sites.google.com/site/uwmathcheck/.

https://sites.google.com/site/uwmathcheck/

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 5

Results Regarding Construction of Hadamard Matrices. In Section 5, we use
MATHCHECK to construct new Hadamard matrices via the Williamson construction.
In [10], we constructed Williamson matrices for all even orders up to 34, while we are
now able to construct Williamson matrices for all even orders up to 42. We furthermore
report on 309 newly identified Williamson matrices of order 40, which can be used
to construct Hadamard matrices of order 160. For comparison, there is only one
Hadamard matrix of order 160 currently listed in the comprehensive database of the
computer algebra system MAGMA. Our constructed matrices will be made available
in a future version of MAGMA (as well as on our website given above).

Performance Analysis of MATHCHECK. In Section 6, we provide detailed per-
formance analysis of MATHCHECK in terms of how much search space reduction is
achieved relative to finite brute-force search, as well as how much time is consumed
by each component of the system. Improvements from symmetry breaking techniques
are also discussed. We additionally compare MATHCHECK to ALLOY *, a higher-order
relational logic solver built on top of a SAT solver on our two graph-theoretic case
studies. We chose to compare against ALLOY * as it was 1) SAT-based; and 2) expres-
sive enough to support our two graph theoretic case studies. Results over the two case
studies favor MATHCHECK.

Verification of Results. We provide details on the techniques used to check the
results of our case studies in Section 7. In addition to checking that the input formula
to the SAT solver and its output are correct, we must also ensure that the learned
clauses generated by the CAS follow from the input specification. We discuss the
analyses we performed and certificates generated by our tool in order to check its
correctness after solving.

2 Background
2.1 Graph Theory

We assume standard definitions for propositional logic, basic mathematical logic
concepts such as satisfiability, and solvers (for a detailed overview, see [7]). We denote
a graph G = (V,E) as a set of vertices V and edges E, where an edge e;; connects the
pair of vertices v; and v;. We only consider undirected graphs in this work. The order
of a graph is the number of vertices it contains. For a given vertex v, we denote its
neighbors — vertices that share an edge with v —as N(v).

The hypercube of dimension d, denoted Q, consists of 24 vertices and 2971 . d
edges, and can be constructed in the following way (see Figure 3a): label each vertex
with a unique binary string of length d, and connect two vertices with an edge if and
only if the Hamming distance of their labels is 1. A matching of a graph is a subset
of its edges that mutually share no vertices. A vertex is matched (by a matching) if
it is incident to an edge in the matching, else it is unmatched. A maximal matching
M is a matching such that adding any additional edge to M violates the matching
property. A perfect matching (resp. imperfect matching) M is a matching such that
all (resp. not all) vertices in the graph are incident with an edge in M. A forbidden
matching is a matching such that some unmatched vertex v exists and every v € N(v)

6 Edward Zulkoski et al.

is matched. Intuitively, no superset of the matching can match v. Vertices in Q, are
antipodal if their binary strings differ in all positions (i.e., opposite “corners” of the
cube). Edges e¢;; and ey are antipodal if {v;, v} and {v;,v;} are pairs of antipodal
vertices. A 2-edge-coloring of a graph is a labeling of the edges with either red or blue.
A 2-edge-coloring is edge-antipodal if the color of every edge differs from the color
of the edge antipodal to it.

A symmetry/automorphism of a graph is a permutation of its vertices that pre-
serves edges and non-edges. The set of all automorphisms of a graph is called its
automorphism group.

2.2 Hadamard Matrices

We define the combinatorial objects known as Hadamard matrices and present some
of their properties.

Definition 1 A matrix H € {£1}"*", n € N, is called a Hadamard matrix, if for all
i # je€{l,...,n}, the dot product between row i and row j in H is equal to zero. We
call n the order of the Hadamard matrix. In other words, a matrix H is a Hadamard
matrix, if HH' = n-I,, where H' denotes the transpose of H and I, is the identity
matrix of size n.

First studied by Hadamard [31], he showed that if # is the order of a Hadamard
matrix, then either n = 1, n = 2 or n is a multiple of 4. In other words, he gave a
necessary condition for the existence of a Hadamard matrix of order n. The Hadamard
conjecture is that this condition is also sufficient, so that there exists a Hadamard
matrix of order n for all n € N where n is a multiple of 4.

Hadamard matrices play an important role in many widespread branches of math-
ematics, for example in coding theory [46,52,65], statistics [32], and aeronautics?.
Because of this, there is a high interest in the discovery of different Hadamard matrices
up to equivalence. Two Hadamard matrices H; and H; are said to be equivalent if H,
can be generated from H; by applying a sequence of negations/permutations to the
rows/columns of Hy, i.e., if there exist signed permutation matrices U and V such that
U-H -V =H.

There are several known ways to construct sequences of Hadamard matrices [60,
51,68]. We will utilize the Williamson construction in this paper, introduced in the
next subsection.

However, no general method is known which can construct a Hadamard matrix
of order n for arbitrary multiples of 4. The smallest unknown order is currently
n=4-167 = 668 [13]. A database with many known matrices is included in the
computer algebra system MAGMA [8]. Further collections are available online [56,
57].

2.2.1 Williamson matrices

Theorem 1 (cf. [68]) Let n € N and let A, B, C, D € {£1}"". Further, suppose that

2 http://www.jpl.nasa.gov/blog/2013/8/hadamard-matrix

http://www.jpl.nasa.gov/blog/2013/8/hadamard-matrix

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 7

1. A, B, C, and D are symmetric;
2. A, B, C, and D commute pairwise (i.e., AB = BA, AC = CA, etc.);
3. A%+ B> 4+ C? + D?* = 4nl,, where I, is the identity matrix of order n.

Then
A B C D
-B A -D C
-C D A —-B
-D-C B A

is a Hadamard matrix of order 4n.

For practical purposes, one considers A, B, C, and D in the Williamson construction
to be circulant matrices, i.e., those matrices in which every row is the previous row
shifted by one entry to the right (with wrap-around, so that the first entry of each row
is the last entry of the previous row). Such matrices are completely defined by their

first row [xo,...,x,_1] and always satisfy the commutativity property. If the matrix
is also symmetric then we must further have x; = x,_1, x = x,_», and in general
xi=x,—;fori=1,...,n— 1. Therefore, if a matrix is both symmetric and circulant

its first row must be of the form
[xO,xth .. ,)C(n,l)/z,x(n,l)/z7 .. ,xz,xl] if n is odd
(X0, X1,%2, -+ X /2 1,%0/2,%n /215 - - X2, %1 if mis even.

(D

Definition 2 A symmetric sequence of length #n is one of the form (1), i.e., one which
satisfies x; = x,_; fori=1,...,n—1.

Williamson matrices are circulant matrices A, B, C, and D which satisfy the
conditions of Theorem 1. Since they must be circulant, they are completely defined
by their first row. (In light of this, we may simply refer to them as if they were
sequences.) Furthermore, since they are symmetric the Hadamard matrix generated by

these matrices is completely specified by the 4[24!] variables

ao,al,...,aﬂn,l)/ﬂ,bo,...,b((,,,l)/z],co,...,c[(n,l)/zw,do, ce 7d((n71)/2}~

3 SAT+CAS Combination Architecture

This section describes the combination architecture of a CAS system with a SAT
solver, the method underpinning the MATHCHECK tool. Figure 1 provides a schematic
of MATHCHECK. The key idea behind such combinations is that the CAS system is
integrated in the inner loop of a conflict-driven clause-learning SAT solver, akin to
how a theory solver T is integrated into a DPLL(T) system [47]. MATHCHECK allows
the user to define predicates in the language of CAS that express some mathematical
conjecture. The input mathematical conjecture can be expressed as a set of assertions
and queries, such that a satisfying assignment to the conjunction of the assertions
and negated queries constitute a counterexample to the conjecture. We refer to this
conjunction simply as the input formula in the remainder of the paper. First, the
formula is translated into Boolean constraints that describes the set of structures (e.g.,

8 Edward Zulkoski et al.

SAT Solver

P € LBoolean Model Learned Counterexample
G2B: vars(¢) <> vars(¢p) odel(9s) Clauses ﬁ) ple(9)
[} T2B: preds(¢) <> vars(¢p)
———{Preprocessor] SAT+CAS Interface
UNSAT
Predicates Constraints Proof

Fig. 1: High-level overview of the MATHCHECK architecture, which is similar to
DPLL(T)-style SMT solvers. MATHCHECK takes as input a formula ¢ over fragments
of mathematics supported by the underlying CAS system, and produces either a
counterexample or a proof that no counterexample exists.

CAS
¢p, G2B, T2B
Domain-specific constraints
5, G2B, T2B assums: vars(¢z) — {T,F}
Generator SAT+CAS
SAT solver result
(Solution / UNSAT core)
SAT UNSAT

Fig. 2: High-level overview of an updated MATHCHECK architecture which was found
useful for generating Hadamard matrices. Following the preprocessing step a generator
script splits the search space into many instances, each instance defined by a set of
assumptions for the variables in ¢p and domain-specific constraints (which can be
generated and interpreted by the CAS). Some instances are pruned away based on a
previous UNSAT core result or by filtering theorems which require the usage of a CAS
to apply. The SAT+CAS box contains a DPLL(CAS) style combination as in Figure 1.

graphs or numbers) referred to in the conjecture. Second, the SAT solver enumerates
these structures in an attempt to counterexample the input conjecture.

During our work on Hadamard matrices, we added an additional feature to MATH-
CHECK which appeared to be useful: We made use of the domain specific knowledge
provided by CAS systems to partition the search space. This is done by introducing a
generator. This generator (with the help of CAS systems) generates SAT instances
which contain additional assumptions causing a solution (if existent) to lie in a specific
partition. The partition in the case of the Williamson construction refers to sequences
that have a certain compression, which we will introduce in subsection 5.3. Figure 2
illustrates this latest design change of MATHCHECK.

The solver, solving each generated SAT instances, routinely queries the CAS
system during its search to learn clauses (akin to callback plugins in programmatic
SAT solvers [26] or theory plugins in DPLL(T) [47]). Clauses thus learned can
dramatically cut down the search space of the SAT solver.

Combining the solver with CAS extends each of the individual tools in the follow-
ing ways. First, off-the-shelf SAT (or SMT) solvers contain efficient search techniques
and decision procedures, but lack the expressiveness to easily encode many complex
mathematical predicates. Even if a problem can be easily reduced to SAT/SMT, the

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 9

choice of encoding can be very important in terms of performance, which is typically
non-trivial to determine, especially for non-experts on solvers. For example, Velev
et al. [64] investigated 416 ways to encode Hamiltonian cycles to SAT as permuta-
tion problems to determine which encodings were the most effective. Further, such a
system can take advantage of many built-in common structures in a CAS (e.g., graph
families such as hypercubes), which can greatly simplify specifying structures and
complex predicates. On the other side, CAS’s contain many efficient functions for
a broad range of mathematical properties, but often lack the robust search routines
available in SAT.

3.1 MATHCHECK for Graph Theoretic Problems

The input to MATHCHECK is a tuple (S, ¢), where S is a propositional formula
extended to allow predicates over graph variables. A graph variable G = (Gy,Gg)
indicates the vertices and edges that can potentially occur in its instantiation, denoted
Gj. A graph variable G consists of a set of |V| Boolean variables (one for each vertex),
and |E| Boolean variables for edges. Setting an edge e;; (resp. vertex v;) to True means
that e;; (resp. v;) is a part of the graph instantiation G;. Through a slight abuse of
notation, we often define a graph variable G = Qg, indicating that the sets of Booleans
in Gy and G correspond to the vertices and edges in the hypercube Qy, respectively.
Predicates can be defined by the user, and are classified as either SAT predicates or
CAS predicates. SAT predicates are blasted to propositional logic, using the mapping
from graph components (i.e., vertices and edges) to Boolean variables.®> As an example,
for any graph variable G used in an input formula, we add an EdgeImpliesVertices(G)
constraint, indicating that an edge cannot exist without its corresponding vertices:

EdgeImpliesVertices(G): /\{e;j = (viAv;)) | ejj € G})

CAS predicates, defined as pieces of code in the language of the CAS, check
properties of instantiated graphs and add learned clauses to the SAT solver when not
satisfied. In our case, we use the SAGE CAS [59], which we essentially use as a
collection of Python modules for mathematics.

Here we provide a very high-level overview, with more details in Section 3.4 below.
Please refer to Figure 1, which depicts the SAT+CAS combination. Given a formula
¢ over graph variables and predicates, we conjoin the assertions with the negated
queries, and preprocess it as described below. When the SAT solver finds a partial
model, additional checks are performed by the CAS using the defined CAS predicates.
The potential solution is either deemed a valid counterexample to the conjecture and
returned to the user, or the SAT search is refined with learned clauses. Output is either
SAT and a counterexample to the conjecture, or UNSAT along with a proof certificate.
Although similar to the DPLL(T) approach of SMT solvers in many aspects, we note
several important differences in terms extensibility, power, and flexibility: 1) rather
than a monolithic theory plugin for graphs, we opt for a more extensible approach by
incorporating the CAS, allowing new predicates (say, over numbers, geometry, algebra,

3 For notational convenience, we often use existential quantifiers when defining constraints; these are
unrolled in the implementation. We only deal with finite graphs.

10 Edward Zulkoski et al.

etc.) to be easily defined via the CAS functionality; 2) the CAS predicates are defined
as pieces of code interpreted by the CAS. This gives considerable additional power
to the SAT+CAS combination; 3) the user may flexibly decide that certain predicates
may be encoded directly to Boolean logic via bit-blasting, and thus take advantage of
the efficiency of CDCL solvers in certain cases.

3.2 MATHCHECK for Hadamard Matrices

An attractive property of Hadamard matrices when encoding them in a SAT context
is that each of their entries is one of two possible values, namely +1. We choose
the encoding that 1 is represented by true and —1 is represented by false. We call
this the Boolean value or BV encoding. Under this encoding, the multiplication
function of two x, y € {1} becomes the XNOR function in the SAT setting, i.e.,
BV(x-y) = XNOR(BV(x),BV(y)).

For each multiplication of two entries in a given matrix, one can store one ad-
ditional variable representing the result of the multiplication. The sum of variables
(when thought of as -1 values) can be encoded using a network of binary adders. Both
of these encodings add polynomially many extra variables to a given SAT instance.

3.3 Williamson encoding
As mentioned before, we have 4 f”zil] variables to solve for in the Williamson con-
struction with circulant matrices. We enforce the conditions

rowsum(A,-*Aj +Bi*Bj+Ci*Cj+Di*Dj) =0 fori##j,

where * denotes componentwise multiplication of sequences of the same length. This
is done by defining new variables to represent the entries of the componentwise
products.

3.4 Architecture of MATHCHECK

The architecture of MATHCHECK specifically used for the graph problems is given
in Figure 1. Figure 2 depicts the addition of the aforementioned generator, which
partitions the search space with the help of domain specific knowledge provided by a
CAS system.

For the graph problems, the Preprocessor prepares ¢ for the inner CAS-DPLL
loop using standard techniques. First, we create necessary Boolean variables that
correspond to graph components (vertices and edges) as described above. We replace
each SAT predicate via bit-blasting with its propositional representation in situ (with
respect to ¢’s overall propositional structure), such that any assignment found by the
SAT solver can be encoded into graphs adhering to the SAT predicates. Finally, Tseitin-
encoding and a Boolean abstraction of ¢ is performed such that CAS predicates are
abstracted away by new Boolean variables; since these techniques are well-known, we
do not discuss them further. This phase produces three main outputs: the CNF Boolean

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 11

abstraction ¢p of the SAT predicates, a mapping from graph components to Booleans
G2B, and a mapping T2B from CAS predicate definitions to Boolean variables. The
CAS predicates themselves are fed into the CAS.

For the search for Williamson matrices, we experimentally discovered that the best
approach is to separate the search space in advance, which lead to the introduction of
the generator. The generator is provided by a problem-specific script, which queries
the CAS system while partitioning the search space. Optimally, the partitioning is
chosen in a way such that the CAS can determine in advance, if the existence of
a solution can be ruled out in some of the partitions by applying domain specific
knowledge. Only SAT instances that are not ruled out by the method are forwarded to
the SAT solver, which itself has again a CAS interface. The instances are specified by
a set of assumptions (i.e., values for the variables in ¢p) and a set of domain-specific
constraints (which can be interpreted by the CAS). For example, our Williamson
instances contained linear equations in terms of the variables in the original formula ¢.

The SAT+CAS interface acts similar to the DPLL(T) interface between the DPLL
loop and theory-plugins, ensuring that partial assignments from the SAT solver satisfy
theory-specific CAS predicates. After an assignment is found, literals corresponding to
abstracted CAS predicates are checked. The SAT+CAS interface provides an API that
allows CAS predicates to interact with the SAT solver, which modifies the API from
the programmatic SAT solver LYNX [26]. In particular, the interface allows learned
clauses to be added to the SAT solver based on the CAS computations. We discuss
concrete examples in Section 4.

3.5 Implementation

We have prototyped our system adopting the lazy-SMT solver approach (as in [55]),
specifically combining the GLUCOSE SAT solver [3] with the SAGE CAS [59]. Minor
modifications to GLUCOSE were made to call out to SAGE whenever an assignment
was found (of the Boolean abstraction). The SAT+CAS interface extends the existing
SAT interface in SAGE. When the solver determines that the formula is UNSAT, we
return two types of certificates. The first is a clausal proof of the final unsatisfiable call
to the SAT solver in the DRUP-TRIM format [33], which can be checked using the
DRUP-TRIM tool. Note however that, unlike a pure SAT solving run, many clauses
were added due to checks of CAS predicates. In order to check the correctness of the
added clauses, we return a second proof certificate, which consists of the mapping from
graph components to Boolean variables, the mapping of abstracted CAS predicates to
Boolean variables, and the set of clauses learned from CAS predicate invocations. We
discuss how we utilize these certificates in greater detail in Section 7.

For the Hadamard matrix construction, we used structural results (outlined in
subsection 5) to partition the search space. The partitioning process is assisted by
computer algebra systems, and for each partition a custom SAT instance is generated.
Different from our implementation in [10], we checked for certain properties which
our sequences must fulfill programmatically, instead of hard-coding the properties
into the SAT instances. In this case study we used a version of MAPLESAT [43]
extended with a SAT+CAS programmatic interface. MAPLESAT is a modification of

12 Edward Zulkoski et al.

Fig. 3: (a) The red edges denote a generated matching, where the blue vertex 000 is
restricted to be unmatched, as discussed in Section 4. A Hamiltonian cycle that includes
the matching is indicated by the arrows. (b) An edge-antipodal 2-edge-coloring of the
cube Q3. Not a counterexample to Conjecture 2 due to the red (or blue) path from 000
to 111.

MINISAT [20] which uses a learning rate branching heuristic. From the programmatic
interface it is possible to make calls to a CAS such as SAGE or C libraries such as
FFTW [24] but we observed the best performance using custom written C functions
instead of library functions. (The graph theory case studies may also have benefited
from custom written C functions but as the CAS functions used were more complex
in those cases we did not attempt to replace them.)

4 Two Results regarding Open Conjectures over Hypercubes

We use our system to prove two long-standing open conjectures up to a certain
parameter (dimension) related to hypercubes, which have not been previously shown.
Hypercubes have been studied for theoretical interest, due to their nice properties
such as regularity and symmetry, but also for practical uses, such as in networks and
parallel systems [12].

4.1 Matchings Extend to Hamiltonian Cycles

The first conjecture we look at was posed by Ruskey and Savage on matchings of
hypercubes in 1993 [53]; although it has inspired multiple partial results [22,30] and
extensions [23], the general statement remains open:

Conjecture 1 (Ruskey and Savage, [53]) For every dimension d, any matching of the
hypercube Q, can be extended to a Hamiltonian cycle.

Consider Figure 3a. The red edges correspond to a matching and the arrows depict
a Hamiltonian cycle extending the matching. Intuitively, the conjecture states that
for any d-dimensional hypercube Q 4, no matter which matching M we choose, we
can find a Hamiltonian cycle of Q, that goes through M. Our encoding searches for

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 13

matchings, and checks a sufficient subset of the full set of matchings of Q, to ensure
that the conjecture holds for a given dimension (by returning UNSAT and a proof).
As we will show, constraints such as ensuring that a potential model is a matching
are easily encoded with SAT predicates, while constraints such as “extending to a
Hamiltonian cycle” are expressed easily as CAS predicates.

Previous results have shown this conjecture true for d < 4.* however the combi-
natorial explosion of matchings on higher dimensional hypercubes makes analysis
increasingly challenging, and a general proof has been evasive. We demonstrate us-
ing our approach the first result that Conjecture 1 holds for Qs — the 5-dimensional
hypercube. We use a conjunction of SAT predicates to generate a sufficient set of
matchings of the hypercube, which are further verified by a CAS predicate to check if
the matching can not be extended to a Hamiltonian cycle (such that a satisfying model
would counterexample the conjecture).

Note that the simple approach of generating all matching of Q; does not scale
(see Table 1 below), and the approach would take too long, even for d = 5. We prove
several lemmas to reduce the number of matchings analyzed. In the following, we use
the graph variable G = Qy, such that its vertex and edge variables correspond to the
vertices and edges in Q.

It is straightforward to encode matching constraints as a SAT predicate. For every
pair of incident edges e, e;, we ensure that only one can be in the matching (i.e., at
most one of the two Booleans may be True), which can be encoded as:

Matching(G): /\{(ﬁel V —ey) | e1,ex € Gg Aincident? (e,)} 3)

The number of clauses generated by the above translation is 27 - (g) , which can
be understood as: for each of the 2¢ vertices in Q,, ensure that each of the d incident
edges to that vertex are pairwise not both in the matching.

A previous result from Fink [22] demonstrated that any perfect matching of
the hypercube for d > 2 can be extended to a Hamiltonian cycle. Our search for a
counterexample to Conjecture 1 should therefore only consider imperfect matchings,
and even further, only maximal forbidden matchings as shown below. To encode this,
we ensure that at least one vertex is not matched by any generated matching. Since all
vertices are symmetric in a hypercube, we can, without loss of generality, choose a
single vertex vo that we ensure is not matched. We encode that all edges incident to vq
cannot be in the matching:

Forbidden(G): /\{—e¢ | e € Gg Aincident?(vo,e)}. 4)

A further key observation to reduce the matchings search space is that, if a match-
ing M extends to a Hamiltonian cycle, then any matching M’ such that M’ C M can
also be extended to a Hamiltonian cycle.

Observation 1. All matchings can be extended to a Hamiltonian cycle if and only if
all maximal forbidden matchings can be extended to a Hamiltonian cycle.

Proof. The forward direction is straightforward. For the reverse, suppose all maximal
forbidden matchings can be extended to a Hamiltonian cycle. For any non-maximal

4 We were unable to find the original source of the results for d < 4, however the result is asserted in
[22]. We also verified these results using our system.

14 Edward Zulkoski et al.

matching M, we can always greedily add edges to M to make it maximal. Call the
maximal matching M’. If M’ is perfect, Fink’s result on perfect matchings can be
applied. If not, then it is a maximal forbidden matching, and by assumption it can be
extended to a Hamiltonian cycle. In either case, the resulting Hamiltonian cycle must
pass through the original matching M. O

We encode this by adding the following constraints to MATHCHECK:

EdgeOn(G): /\ {v = \/{e | e € Gg Aincident?(v,e)} | ve GV})

Maximal(G): \{(v;Vv;) | e;; € G} (6)

Equation 5 states that if a vertex is on, then one of its incident edges must be in the
matching. Equation 6 ensures that we only generate maximal matchings.

Proposition 1. The conjunction of Constraints 2 — 6 encode exactly the set of maximal
forbidden matchings of the hypercube in which a designated vertex vy is prevented
from being matched.

Proof. 1t is clear from above that any model generated will be a forbidden matching
by Constraints 3 and 4 — we prove that Equations 5 and 6 ensure maximality. Suppose
M is a non-maximal matching. Then there exists an edge e such that the matching
does not match either of its endpoints. By Constraints 2 and 5, no edge is incident
with either endpoint. But then edge e could be added without violating the matching
constraints, and Constraint 6 is violated. Thus, any matching generated must be
maximal. It remains to show that all forbidden maximal matchings that exclude vo can
be generated. Let M be a forbidden maximal matching such that vy is unmatched. We
construct a satisfying variable assignment over Constraints 2 — 6 which encodes M as
follows:

{e|leesM}U{-e|ec Ge\M}U
{v | 3eemincident?(v,e) } U {=v | B.cp incident?(v,e)}.

)

Constraint 3 holds since M is a matching, and therefore no two incident edges can both
be in M. Constraint 4 holds since it is assumed that v is not matched, and therefore
no edge incident to vy can be in M. Constraints 2 and 5 hold simply because they
encode the definition of a matched vertex, and the second line of Equation 7 ensures
that only matched vertices are in the satisfying assignment. Constraint 6 holds since
M is maximal. O

To check if each matching extends to a Hamiltonian cycle, we create the CAS
predicate EXTENDSTOHAMILTONIAN (see Figure 4), which reduces the formula to
an instance of the traveling salesman problem (TSP). Let M be a matching of Q.
We create a TSP instance (Q,, W), where Qy is our hypercube, and W are the edge
weights, such that edges in the matching (red edges in Figure 3a) have weight 1, and
otherwise weight 2 (black edges).

Proposition 2. Let |V| be the number of vertices in ;. A Hamiltonian cycle exists
through M in Qy if and only if TSP((Q4,W)) =2|V| — |M]|.

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 15

1: EXTENDSTOHAMILTONIAN() 1: ANTIPODALMONOCHROMATIC()

2 g < s.getGraph(G) 2 g < s.getGraph(G)

3 q < CubeGraph(5) 3 q < CubeGraph(6)

4 for e in g.edges() do 4 pairs < getAntipodalPairs(q)

5 ifeing 5: for (vi,v;) in pairs do

6: gq.setEdgeLabel(e, 1) 6: if shortestPath(g,vy,v2) # 0

7: else 7 return True > a path exists
8 g.setEdgeLabel(e, 2) 8 return False

9: (cycle, weight) < TSP(g)
10: return weight == 2 - g.order() — |g|

Fig. 4: CAS-defined predicates from each graph theoretic case study. In EXTEND-
STOHAMILTONIAN, g corresponds to the matching found by the SAT solver. In
ANTIPODALMONOCHROMATIC, g refers to the graph induced by a single color in the
2-edge-coloring.

Proof. Since Qy has |V| vertices, any Hamiltonian cycle must contain |V| edges. (<)
From our encoding, it is clear that 2|V | — |M| is the minimum weight that could
possibly be outputted by TSP, and this can only be achieved by including all edges in
the matching and |V | — |[M| edges not in the matching. (=) The Hamiltonian cycle
through M has |M| edges contributing a weight of 1, and |V | — |M| edges contributing
a weight of 2. The total weight is therefore M| +2(|V| — |M|) = 2|V| —|M|. From
above, this is also the minimum weight cycle that TSP could produce. O

Finally, after each check of EXTENDSTOHAMILTONIAN that evaluates to True,
we add a learned clause, based on computations performed in the predicate, to prune
the search space. Since a TSP instance is solved we obtain a Hamiltonian cycle C
of the cube. Clearly, any future matchings that are subsets of C can be extended to a
Hamiltonian cycle; our learned constraint prevents these subsets (below 4 refers to the
Boolean variable abstracting the CAS predicate):

\/{e | e € Qu\C}U{h}, where C is the learned Hamiltonian cycle. (8)
Our full formula for Conjecture 1 is therefore:

assert EdgeImpliesVertices(G) A Matching(G) A
Forbidden(G) A EdgeOn(G) A Maximal(G))
query ExtendsToHamiltonian(G)

4.2 Connected Antipodal Vertices in Edge-antipodal Colorings
The second conjecture deals with edge-antipodal colorings of the hypercube:

Conjecture 2 ([17]) For every dimension d, in every edge-antipodal 2-edge-coloring
of Qy, there exists a monochromatic path between two antipodal vertices.

Consider the 2-edge-coloring of the cube in Figure 3b. Although the coloring is
edge-antipodal, it is not a counterexample, since there is a monochromatic (red) path

16 Edward Zulkoski et al.

from 000 to 111, namely (000,100,110, 111). In this case, constraints such as edge-
antipodal-ness are expressed with SAT predicates. We ensure that no monochromatic
path exists between two antipodal vertices with a CAS predicate. Previous work has
shown that the conjecture holds up to dimension 5 [21] — we show that the conjecture
holds up to dimension 6.

We begin with a graph variable G = Qg, and constrain it such that its instantiation
corresponds to a 2-edge-coloring of the hypercube. More specifically, since there are
only two colors, we associate edges in G’s instantiation Gy (i.e., edges evaluated to
True) with the color red, and the edges in Q,\ G; with blue. An important known result
is that for a given coloring, the graph induced by edges of one color is isomorphic to
the other. It is therefore sufficient to check only one of the color-induced graphs for a
monochromatic antipodal path.

We first ensure that any coloring generated is edge-antipodal.

EdgeAntipodal(G): /\{(—e1 Ae2) V (e1 A—er)

(10)
| e1,er € Gg /\isAntipodal?(el ,82)}.

Note that for every edge there is exactly one unique antipodal edge to it. Since
there are 247! . 4 edges in Q,, and therefore 2972 - d pairs of antipodal edges, there are
22472 possible 2-edge-colorings that are antipodal. We can reduce the search space
by using a recent result from Feder and Suber [21]:

Theorem 1 ([21]). Call a labeling of Q, simple if there is no square (x,y,z,t) such
that e,, and e are one color, and ey, and e;, are the other. Every simple coloring has a
pair of antipodal vertices joined by a monochromatic path.

We therefore prevent simple colorings by ensuring that such a square exists:

NonSimple(G): \/{(—\exy Ney: Nmey Nep) V (exy N ey Aey A —epy) (an
| exy, ez, €z, e € GE NisSquare?(exy, eyz, e, €x) }-

It remains to check whether an antipodal monochromatic path exists, which is
checked by the CAS predicate ANTIPODALMONOCHROMATIC in Figure 4. Given
a graph G, which contains only the red colored edges, we first compute the pairs
of antipodal vertices in Q. Using the built-in shortest path algorithm of the CAS,
we check whether or not any of the pairs are connected, indicating that an antipodal
monochromatic path exists. In the case when predicate returns True, we learn the
constraint that all future colorings should not include the found antipodal path P (m
abstracts the CAS predicate):

\/{—e | e € P}U{m}, where P is the learned path. (12)
The full formula for Conjecture 2 is then:

assert EdgelmpliesVertices(G) A EdgeAntipodal(G) A NonSimple(G)

13
query AntipodalMonochromatic(G) (13)

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 17

(d) (1,4,2)(3,5,6) (e) (1,2,4)(3,6,5)) (1,4)(3.6)

Fig. 5: The six unique Hamiltonian cycles of Q3. The cycle in part (a) is the initially
learned cycle, and all are others are derived from (a) using the respective permutations
written in cyclic notation.

4.3 Symmetry Breaking

In each case study, a learned clause is added to the solver whenever the respective CAS
predicate is not satisfied by the current model. While the learned clauses described
above prune many non-satisfying models from being returned by the solver (e.g., any
matching that is a subset of the Hamiltonian cycle in the first case study), many similar
learned clauses can be obtained through symmetry breaking techniques, due to the
highly symmetric nature of hypercubes. Our approach to symmetry breaking is loosely
inspired by the work of Benhamou et. al [6], which proposes an enhanced version
of clause learning where all symmetric clauses are learned during conflict analysis,
rather than a single conflict clause.

Consider Figure 5. From the first case study, if we discover the Hamiltonian cycle
in Figure 5a, then we learn a clause preventing any model that corresponds to a subset
of the cycle. Informally, if we fix the vertices of the cube but rotate the Hamiltonian
cycle to different orientations, we can learn clauses for each found cycle. Similarly, in
the Antipodal case study we can learn many antipodal monochromatic paths through
such rotations.

In order to compute such clauses, prior to solving, we simply compute the au-
tomorphism group of the hypercube using the CAS. In our case, the SAGE CAS
interfaces the BLISS graph automorphism tool [37]. Then, whenever a Hamiltonian
cycle C is learned, for every symmetry 7 in the automorphism group, we compute
C* ={(",v") | (u,v) € Cg}. It can easily be seen that C” is also a Hamiltonian cycle

18 Edward Zulkoski et al.

of the hypercube due to the properties of symmetries, and we only briefly outline the
intuition for this. Suppose C = {cy,¢3,...,cn,c1). For any edge in the cycle (¢;,cit+1),
we know that (c,cf_ ;) is an edge in the cube since symmetries preserve the set of
edges and non-edges. Finally, since 7 is a permutation of the vertices, c7,...,c} are
unique, so C” is a Hamiltonian cycle.

The Antipodal case study is handled analogously. We note that performing this
operation over the entire automorphism group can generate many redundant clauses;
we ensure that duplicates are not added. This can be optimized by considering only

the proper symmetry group, which omits any symmetries from reflection.

5 Search for Williamson Generated Hadamard Matrices using SAT+CAS

We impose additional constraints on the search space of Williamson matrices to cut
down on extraneous solutions and hence speed up the search.
1. Ordering. Without loss of generality, we can assume

[rowsum(A)| < |rowsum(B)| < |[rowsum(C)| < |rowsum(D)],

where rowsum(X) denotes the sum of the entries of the first (or any) row of X. Any
choices A, B, C, and D can be permuted so that this condition holds.

2. Negation. The entries in the sequences defining any of A, B, C, or D can be negated
and the sequences will still generate a Hadamard matrix. Given this, we do not need
to try both possibilities for the sign of the rowsum of A, B, C, and D. For example,
we can choose to enforce that the rowsum of each of the generating matrices is
nonnegative. Alternatively, when n is odd we can choose the signs so they satisfy
rowsum(X) =n (mod 4) for X € {A,B,C, D}. In this case, a result of Williamson [68]
says that a;b;c;d; = —1 for all 1 <i < (n—1)/2. This additional symmetry structure
tremendously cuts down the search space, and is the reason why mainly Williamson
matrices for odd n are studied.

3. Permuting entries. We can reorder the entries of the generating sequences with
the rule a; — ag; mod » Where k is any number coprime with n, and similarly for b;,
¢i, d; (the same reordering must be applied to each sequence for the result to still be
equivalent).

5.1 Power spectral density

One set of properties specific for Williamson matrices is derived using the dis-
crete Fourier transform from Fourier analysis, i.e., the periodic function DFTy4 (s) :=

"1 ax @ for a sequence A = [ag,ai,...,a,_1], where s € Z and @ := ¢*™/" is a
primitive nth root of unity.

The power spectral density of the sequence A is given by
PSD4(s) := [DFTA(s)|* fors € Z.

The importance of the power spectral density in the search for Hadamard matrices
will become apparent in Theorem 2.

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 19

5.2 Periodic autocorrelation

As we will see, the defining properties of Williamson matrices (in particular, condi-
tion 3 of Theorem 1) can be re-cast using a function known as the periodic autocorre-
lation function (PAF). Re-casting the equations in this way is advantageous because
many combinatorial conjectures can be stated in terms of the PAF, allowing code used
for one conjecture to be applied to other conjectures.

Definition 3 The periodic autocorrelation function of the sequence A is the peri-
odic function given by

n—1

PAF4(s) == Z kA (jt-5) mod n for s € Z.
k=0
Similar to the discrete Fourier transform, one has PAF, (s) = PAF, (s mod n) and
PAF,(s) = PAF4(n —s) (see [39]), so that the PAF, only needs to be computed for
s=0,..., L%J ; the other values can be computed through symmetry and periodicity.
Now we will see how to rewrite condition 3 of Theorem 1 using PAF values. Note
that the sth entry in the first row of A> 4+ B> 4+ C? 4+ D? is

PAFA (S) + PAFB(S) + PAFC (S) + PAFD(S).

Condition 3 requires that this entry should be 4n when s = 0 and it should be 0 when
s =1, ..., n—1. The condition when s is 0 does not need to be explicitly checked
because in that case the sum will always be 4n, as PAF4(0) = Y/—)(+1)> = n and
similarly for B, C, and D.

Additionally, the first row of A2 + B2 4 C? + D? will be symmetric as each matrix
in the sum has a symmetric first row. Thus ensuring that

PAF,(s) +PAFp(s) + PAFc(s) + PAFp(s) =0 fors=1,..., [%5}] (14)

guarantees that every entry in the first row of A2+ B>+ C? + D? is 0 besides the first.
Since A% + B% 4 C? + D? will also be circulant, ensuring that (14) holds will ensure
condition 3 of Theorem 1.

5.3 Compression

Because the size of the space in which a combinatorial object lies is generally expo-
nential in the size of the object, it is advantageous to instead search for smaller objects
when possible. Recent theorems on so-called “compressed” sequences allow us to do
that when searching for Williamson matrices.

Definition 4 (cf. [50]) Let A = [ag,ay,...,a,—1] be a sequence of length n = dm and
set
dY =a;+aiq+-+a =0 d—1
Y Jj+d ajJr(mfl)dv J=Y,... .

Then we say that the sequence Ald) = [a(()d),a(ld), e ,afid_)l] is the m-compression of A.

The PAF and PSD can be still applied to compressed sequences. We utilize the
following theorem which is a special case of a result from [50].

20 Edward Zulkoski et al.

Theorem 2 Let A, B, C, and D be sequences of length n = dm which satisfy

4n, s=0
PAF PAF(s) + PAF PAFp(s)={ 15
4(s) + PAFp(s) c(s) +PAFp(s) {0, 1 <s<len(A). (1

Then for all s € 7 we have
PSDy(s) +PSDg(s) +PSD¢(s) +PSDp(s) = 4n. (16)

Furthermore, both (15) and (16) hold if the sequences A, B, C, D are replaced with
their compressions A(d), B(d>, C(d), D),

Proofs to the below stated lemmas can be found in [10].

(d)

Lemma 1 If A is a sequence of length n = dm with £1 entries, then the entries a; ’,

i €{0,...,d — 1}, have absolute value at most m and al(d) =m (mod 2).

Lemma 2 The compression of a symmetric sequence is also symmetric.

5.4 Encoding and Search Space Pruning Techniques

Additional techniques which we used to break down the problem and assist our SAT
solver are given as follows.

1. Sum-of-squares decomposition: Theorem 2 states that for d = 1 and m = n, we
have the identity

PAFA(l) (O) +PAFB(1) (0) + PAFC(I) (0) + PAFD(I) (0) = 41’1,

simplifying to rowsum(A)? +rowsum(B)? + rowsum(C)? +rowsum(D)? = 4n. In
other words, we know that the row-sums of A, B, C and D form a sum-of-squares
decomposition of 4n.

2. Divide-and-Conquer via compression: We can divide the search space with
respect to different possible compressions. Since many properties are stable under
compression, we can also rule out certain compressions right away using filtering
theorems.

3. UNSAT core: The instances generated by the divide-and-conquer process process
are very similar (e.g., the order 40 instances contained 4185 variables and only
at most 184 variables differed between instances). Because of this similarity, a
short reason why one instance is unsatisfiable may also apply to other similar
instances. Some SAT solvers such as MAPLES AT [43] support the generation of
such a reason in the form of an UNSAT core; if the reason why an instance is
unsatisfiable applies to other instances those instances can immediately be pruned
away.

4. Programmatic SAT: In our previous publication [10], we encoded all knowledge
about the matrices A, B, C, and D directly in each SAT instance we created. In this
updated version of MATHCHECK, we chose to not directly encode all conditions
in the SAT instances, but instead let the SAT+CAS solver check some conditions
programmatically. Specifically, the possible compressions which were not removed

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 21

Dimensions Matchings | Forbidden Matchings | Maximal Forbidden Matchings
2 7 3 0
3 108 42 2
4 41,025 14,721 240
5 13,803,794,944 4,619,529,024 6,911,604

Table 1: The number of matchings of the hypercube were computed using our tool in
conjunction with sharpSAT [62]: a tool for the #SAT problem. Note that the numbers
for forbidden matchings are only lower bounds, since we only ensure that the origin
vertex is unmatched. However, any unfound matchings are isomorphic to found ones.

by the generator were translated into a set of linear constraints which were passed
to the SAT+CAS solver. The CAS would then use these constraints to generate
learned clauses as the search progressed.

With all the mentioned techniques, we have successfully found 309 Williamson
matrices of order 40. These lead to 309 new, pairwise inequivalent, Hadamard matrices
of order 160.

6 Performance Analysis of MATHCHECK

For the two graph theoretic conjectures, we ran Formula 9 with d = 5 and Formula 13
with d = 6 until completion. Since both runs returned UNSAT, we conclude that both
conjectures hold for these dimensions, which improves upon known results for both
conjectures.

The experiments were performed on a 2.4 GHz 4-core Lenovo Thinkpad lap-
top with 8GB of RAM, running 64-bit Linux Mint 17. We used SAGE version 6.3
and GLUCOSE version 3.0. Formula 9 required 348,150 checks of the EXTENDSTO-
HAMILTONIAN predicate, thus learning an equal number of Hamiltonian cycles in the
process, and took just under 8 hours. Formula 13 required 86,612 checks of the AN-
TIPODALMONOCHROMATIC predicate (learning the same number of monochromatic
paths), requiring 1 hour 35 minutes of runtime. We note that for lower dimensional
cubes solving time was far less (< 20 seconds for either case study). Adding symmetry
breaking greatly reduced the solving time and number of CAS predicate checks: the
first case study required 1 hour and 5 minutes, and 2441 CAS predicate checks, while
the second took only 3 minutes and 122 predicate checks.

The approach we have described significantly dominates naive brute-force ap-
proaches for both conjectures; learned clauses greatly reduce the search space and
cut the number of necessary CAS predicate checks. Given the data in Table 1 and
the number of calls to EXTENDSTOHAMILTONIAN for Qs, a brute-force check of all
matchings (resp. forbidden matchings) of Qs would require 39,649 (resp. 20) times
more checks of the predicate (i.e., that many more TSP calls) than our approach.
Similar comparisons can be made for the second case study.

Figure 6 depicts how much time is consumed by the SAT solver and CAS predicates
in both case studies, and Figure 7 indicates the same but with symmetry breaking
enabled. The lines denote the cumulative time, such that the right most point of each

22 Edward Zulkoski et al.

16000 6000,
14000 — ExtendsToHamiltonian ,f — AntipodalMonochromatic
--- SAT Solver 5000t --- SAT Solver

12000 : _
2 < 4000
o o
£ 10000 £
= =
¢ 8000 23000
® s
2 6000 2
E E 2000]
4000 ©

2000 1000

T e Lt
K 50000 100000 150000200000 250000 300000 350000 05 ~7000020000300004000050000600007 0000800003000
Iteration Iteration

Fig. 6: Cumulative times spent in the SAT solver and CAS predicates during the
two graph theory case studies. SAT solver performance degrades during solving (as
indicated by the increasing slope of the line), due to the extra learned clauses and more
constrained search space.

3500 160,
— ExtendsToHamiltonian + sym — AntipodalMonochromatic + sym |,
'
3000f| --. SAT Solver . 1401 ... sAT solver '
'
'
S 2500 5% '
g £ 100
E 2000 E
2 2 80
B 1500 kS
g g 60)
5 5
1000
© © a0
500) 20
L '
% 500 1000 150-0_ 2000 2500 00 20 40 60 80 100 120 140
Iteration Iteration

Fig. 7: Cumulative times spent in the SAT solver and CAS predicates during the two
graph theory case studies with symmetry breaking. Note the differing axes from Figure
6. Interestingly, solving time is now dominated by the last UNSAT call.

line is the total time consumed by the respective system component. The near-linear
lines for the CAS predicate calls indicate that each check consumed roughly the same
amount of time. SAT solving ultimately dominates the runtime in both case studies,
particularly due to later calls to the solver when many learned clauses have been
added by CAS predicates, and the search space is highly constrained. Interestingly, the
final UNSAT call to the SAT solver when symmetry breaking was enabled required
significantly more time than any other calls. We did not experience this behaviour in
the non-symmetry breaking experiments.

One of our motivations for this work was to allow complicated predicates to be
easily expressed, so it is worth commenting on the size of the actual predicates. Since
predicates were written using SAGE (which is built on top of Python), the pseudocode
written in Figure 4 matches almost exactly with the actual code, with small exceptions
such as computing the antipodal pairs in the second one. All other function calls
correspond to built-in functions of the CAS. Learn-functions were also short, requiring
less than 10 lines of code each.

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 23

To compute the new Hadamards of order 160 we ran our generation script for 300
hours on a 3.3 GHz Intel Xeon CPU E5-2667 v2 processor under 64-bit Ubuntu Linux
14.04. We used MAPLE for computing the possible sum-of-squares decompositions
and NUMPY [66] for computing the power spectral densities. 171,910 total possible
compressions were computed, of which 139,761 were eliminated using UNSAT cores.
Of the remaining instances, 31,793 were found to be UNSAT and 356 were found to
be SAT; this process took a total of 26,193 seconds. The SAT solver used was a version
of MAPLESAT [43] modified to support the programmatic interface as described in
Section 3.4.

6.1 Analysis of Hypercube Case Studies with Existing SAT-based Approaches

We were interested in finding previously existing SAT-based tools capable of efficiently
solving and expressing the problems in our two graph theoretic case studies. Our crite-
ria for selecting a tool were that both case studies could be succinctly expressed, and
solved for at least lower-dimensional cubes with reasonable efficiency. We excluded
standard SMT solvers from this evaluation due to poor support for higher-order logic.
Since we are dealing with finite cases, one could in theory compare against “bitblast-
ing” approaches, akin to how Hamiltonian cycle constraints are expressed in SAT
solvers [64]. However, since our formula requires that no Hamiltonian cycle exists
through the matching, encoding techniques from [64], which check for the existence
of a Hamiltonian cycle, cannot be succinctly used to encode our formula.” We discuss
other related tools in Section 8.

One such tool that met these criteria was ALLOY*, a relational finite model
finder for higher-order logic [45], which extends its first-order predecessor [36].
Alloy (for first-order logic) translates input to the constraint solver KODKOD [63],
which performs an efficient translation to SAT. ALLOY* extends this approach with a
CEGAR loop on top of KODKOD; abstraction avoids solving higher-order constraints
directly, and refinement ensures that models that do not satisfy the elided higher-order
constraints are avoided in future iterations of the CEGAR loop.

For our experiments, we used default options for ALLOY*, however we changed
the underlying SAT solver to GLUCOSE (which is generally considered faster than the
default solver SAT47J), to match our experiments, and increased maximum memory to
4GB, which was the maximum allowed by their user interface. We also increased the
maximum CEGAR loop iterations to 100,000, although this limit was never reached.
For encoding Hamiltonicity, we used the monadic second-order logic encoding from
[19, p. 247], with slight modifications due to ALLOY*’s concise syntax and for
performance improvements. For ensuring that a monochromatic path exists between
two antipodal vertices, we used a previously encoded connected constraint that is

5 In [64], the Hamiltonian cycle detection problem is reduced to SAT by encoding it as a permutation
problem, such that if a Hamiltonian cycle exists, then the permutation extracted from the model corresponds
to the cycle. In order to negate this existential check (as is needed by Formula 9), one must ensure that
all permutations of the vertices do not correspond to a Hamiltonian cycle. While this can be succinctly
expressed a quantified Boolean formula (QBF), a substantial number of universally quantified variables must
be introduced. Hamiltonian cycle detection can also be succinctly expressed in answer set programming
(ASP) [44], but similar search-space explosion problems still exist.

24 Edward Zulkoski et al.
Case Study Translation (s) | Solving (s) #Vars #Clauses | MATHCHECK Time (s)
Matchings(3) 1.583 3.051 8037 27370 0.160
Matchings(4) N/A N/A N/A N/A 0.961
Matchings(5) N/A N/A N/A N/A 28800.000
Antipodal(3) 0.511 0.054 18366 65927 0.463
Antipodal(4) 4.201 0.268 203066 838251 2211
Antipodal(5) 92.627 4.091 | 2221834 | 10682619 28.035
Antipodal(6) N/A N/A N/A N/A 3900.000

Table 2: Translation and solving times for ALLOY* on the two graph theory case
studies (hypercube dimension indicated in parentheses). The number of variables
and clauses produced by ALLOY *’s translation to SAT are likely the reason for long
translation times. Times for MATHCHECK indicate total time; translation times were
negligible compared to solving.

available with the ALLOY* implementation. We also made use of ALLOY*’s when
construct, which improves performance of the CEGAR loop on quantified implications.
All encodings are available at [70].

Table 2 displays the time taken by ALLOY* to translate its input to SAT and then
perform solving. Recall that solving may require many calls to the SAT solver due to
the CEGAR loop. We also included the total number of variables and clauses in the
initial translation to SAT. ALLOY * produces an error during the translation phase for
the Matching case study for d = 4, and the Antipodal case study for d = 6, presumably
due to memory constraints and the large CNF formulas generated. Interestingly,
running time is completely dominated by the translation for the Antipodal case study.
The long translation time is due to the large increase in problem size when converting
from relational first order logic to SAT, for these particular problems. In addition, their
approach does not take advantage of predicate-specific learning opportunities, such
as preventing any future matchings that are subsets of found cycles in the Matchings
case study.

7 Verification of Results

Given the mathematical nature of our results, it is important to have a high degree
of confidence in their correctness. This is especially true when trying to disprove a
statement. In the Hadamard case, we tried to find instances of Hadamard matrices for
order 40 in this paper. Once found, it is easy to verify their validity by independently
checking the properties in different computer algebra systems. However, if an UNSAT
is expected, as in the graph-theoretic problems we dealt with in this paper, one has
to rely on the correctness of the encodings, the theory and the tools that have been
used. Two main issues typically arise when verifying SAT-based analysis: 1) one
must ensure that input to the SAT solver is correct, i.e., the tool which generates the
DIMACS file correctly encodes the problem; 2) the computation of the SAT solver
is correct. Other SAT-based analyses of mathematical problems, such as the “SAT
attack” on the Erd@s-discrepancy problem by Konev et al. [38] or the work of Heule et
al. [34] on solving the Boolean Pythagorean triples problem, mitigate these concerns

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 25

in primarily two ways. First, in each of these works, the input DIMACS files could
be generated by a very small program, which could be checked manually. In both
cases, these generators were publicly released in order to be independently validated.
Second, SAT solver proofs were verified with off-the-shelf clausal proof verifiers, such
as DRUP-TRIM [33] or the more recent DRAT-TRIM [67].

Several issues arise when trying to take similar steps for our results. First, our tool
has grown to several thousands of lines of code, and relies on multiple other software
systems such as SAGE [59], GLUCOSE [3], and various Python libraries. As such,
manually verifying the correctness of such a system is a non-trivial task. In order to
strengthen the confidence in our results, we instead provide separate SAT generators
for our two graph theory case studies, independent from the rest of our tool’s codebase,
that are small enough to be manually checked (approximately 100 lines of Python
code each). Second, since clauses are periodically added to the solver via external
calls to the CAS, merely checking the proof produced by the final UNSAT call to the
SAT solver is insufficient. We must additionally ensure that clauses returned by the
CAS predicates adhere to their specifications, i.e., Formulas 8 and 12. We discuss
the independent checkers and certificates in more detail in the following sections. All
code is available in [70].

7.1 UNSAT Proof Certificates

When MATHCHECK returns UNSAT, two types of proof certificates are produced.
The first is a DRUP-TRIM certificate [33] from the final [unsatisfiable] call to the SAT
solver. This is then checked with DRUP-TRIM to verify the correctness of the SAT
solver’s resolution proof; since this approach is commonly used we do not elaborate
further. The proof for our Matchings case study was 927 MB in size, and for the
Antipodal case study it was 1.4 GB (for the highest dimension cubes checked). In both
of our case studies, DRUP-TRIM verified the proofs produced by the SAT solver. We
also verified the results for lower dimensional cubes.

The second certificate is used to check the clauses produced by the CAS. The
certificate is a triple (M, P,C), where M is a bijection between graph components (i.e.,
vertices and edges) and DIMACS variables, P is a similar mapping from abstracted
CAS predicates and their corresponding DIMACS variables, and C is the set of learned
clauses produced by the CAS predicates. We additionally annotate which CAS predi-
cate produced each clause. The purpose of this certificate is to verify that the learned
clauses produced by the CAS predicates adhere to their specification. This involves
creating specialized checkers for each predicate. For example, consider a certificate
(M, P,C) produced by the Matchings case study. It may be useful to refer to Formula
8. For a given learned clause, we first ensure that all literals occur positively, and then
lift all DIMACS variables to their associated graph components/CAS predicates (e.g.,
the abstraction & of EXTENDSTOHAMILTONIAN) using M and P. We ensure that, for
example, & exists in the learned clause, and that all remaining variables correspond
to edges in the graph (as opposed to vertices). Finally, we check that the set of edges
not represented in the clause correspond to a Hamiltonian cycle of Q,;. We repeat this
process for every learned clause produced during solving.

26 Edward Zulkoski et al.

7.2 Correctness of Specification

As discussed, ensuring the correctness of a large system is non-trivial, and testing
that the tool correctly encodes the problem to SAT may not be sufficient. For our
two graph theory case studies, we opted to create separate DIMACS generators that
are much more concise than MATHCHECK’s code base (approximately 100 lines
of code each). These generators however only directly generate clauses related to
the SAT predicates, and rely upon the certificate produced by MATHCHECK (which
is also checked) to add the clauses generated by the CAS predicates (e.g., clauses
associated with learned Hamiltonian cycles). One additional complication is that
since these learned clauses adhere to the mapping between graph components and
DIMACS used when MATHCHECK solved the formula, we must use the same mapping
when generating DIMACS. We therefore ensure that the graph components used in
our generators correctly adhere to the mapping specified in the first field M of the
certificate, as discussed previously. Finally, before adding the learned clauses to the
DIMACS file, we check that they correspond to Formulas 8 and 12, using specialized
checkers as described previously. In both case studies, the generated SAT formulas
were unsatisfiable, as expected. We again verified these results with DRUP-TRIM.

7.3 Verification of Discovered Hadamard Matrices

The generator produces SAT instances for each partition of the search space with
respect to the possible compressions of fixed length sequences, as introduced in section
5.3. When a solver can find a solution to one of these instances, it produces a certificate
in form of the encoded first lines of the found circulant matrices A, B, C and D in
the Williamson construction. A custom program then translates these certificates
into a Hadamard matrix using Theorem 1. The same program verifies the pairwise
orthogonality of the rows of the produced matrix. As an independent verification, we
used the computer algebra system MAGMA, which has a mechanism implemented to
check if a matrix is in fact a Hadamard matrix.

The independent check if the found matrices are coming from different equivalence
classes (cf. section 2.2) is also performed using the equivalence testing functionality
in MAGMA.

All these separate checks contribute to our confidence that our construction meth-
ods are correct. However, besides our independent code review and testing practices,
the generator script and specifically its CAS interface has not been formally verified.
This will be subject of future work.

7.4 Further Threats to Correctness

While we strive to ensure correctness of as much of our tool as possible, since it
has not been formally verified, we do make some assumptions regarding correctness.
Specifically, we do not check that communication between the SAT solver and CAS
is correct, in the sense that the mapping between graph components and DIMACS

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 27

variables remains constant. Second, we base our checks on the assumption that the
human-derived proofs from Section 4 are correct. Ideally, these proofs would be
verified with a theorem prover such as COQ [61] or ISABELLE [48]. Nonetheless, we
believe that our current approach gives a high-degree of confidence in the correctness
of our results.

8 Related Work

As already noted, our approach of combining a CAS system within the inner-loop
of a SAT solver most closely resembles and is inspired by DPLL(T) [47]. There are
also similarities with the idea of programmatic SAT solver LYNX [26], which is an
instance-specific version of DPLL(T). Also, our tool MATHCHECK is inspired by the
recent SAT-based results on the Erd6s discrepancy conjecture [38]. Other works [18,
27,58] have extended solvers to handle graph constraints, as discussed in Section 1,
by either creating solvers for specific graph predicates [27,58], or by defining a core
set of constraints with which to build complex predicates [18]. Our approach contains
positive aspects from both: state-of-the-art algorithms from the CAS can be used to
define new predicates easily, and the methodology is general, in that new predicates can
be defined using the CAS. A recent solver called MONOSAT is capable of efficiently
solving problems involving monotonic theories [5]; in particular it supports many
graph properties such as shortest path, connectedness, minimum spanning tree, etc. An
efficient encoding for the edge-antipodal colorings conjecture may be possible using
their approach, however the Ruskey-Savage conjecture violates the monotonic theory
requirement. ALLOY* [45] is capable of solving many bounded higher-order relational
logic specifications, and can therefore support the types of problems addressed in our
case studies. We showed in Section 6.1 that the encodings of the two graph theory case
studies do not seem to scale in ALLOY*, partly due to the time needed to translate the
problem to the large SAT formulas generated during solving.

Several tools have combined a CAS with SMT solvers for various purposes,
mainly focusing on the non-linear arithmetic algorithms provided by many CAS’s. For
example, the VERIT SMT solver [9] also uses functionality of the REDUCE CAS® for
non-linear arithmetic support. Our work is more in the spirit of DPLL(T), rather than
modifying the decision procedure for a single theory.

Symmetry breaking has been a widely studied topic in the context of SAT [54,6,
1], constraint solving [28,29,63], and more recently SMT [16,2]. Symmetry break-
ing approaches are either static — constraints are added before solving to prevent
isomorphic models, as in [63], or dynamic — symmetries are detected during search
and appropriate clauses are added, as in [29,6]. Our approach is most inspired by
[6] — rather than learning a single learned clause from an unsatisfied CAS predicate,
many are learned that correspond to graphs isomorphic to the one found (e.g., the
Hamiltonian cycle).

6 http://www.reduce-algebra.com/index.htm

http://www.reduce-algebra.com/index.htm

28 Edward Zulkoski et al.

9 Conclusions and Future Work

In this paper, we present MATHCHECK, a combination of a CAS in the inner-loop of a
conflict-driven clause-learning SAT solver, and we show that this combination allows
for highly expressive predicates that are otherwise non-trivial/infeasible to encode as
purely Boolean formulas. Our approach combines the well-known domain-specific
abilities of CAS with the search capabilities of SAT solvers thus enabling us to both
construct Hadamard matrices of high orders and finitely verify two long-standing open
mathematical conjectures over hypercubes up to to particular dimension, not feasible
by either kind of tool alone. We further discussed how our system greatly dominates
naive brute-force search techniques for the case studies. Known symmetry breaking
techniques further drastically reduced solving times. We stress that the approach is not
limited to the domain of combinatorics. In fact, the ideas behind MATHCHECK can
be applied to any conjecture, which can be potentially disproved by finding an object
in a finite domain. We intend to extend our work to other branches of mathematics
supported by CAS’s, such as number theory. Another direction we plan to investigate
is integration with a proof-producing SMT solver, such as VERIT. In addition to taking
advantage of the extra power of an SMT solver, the integration with VERIT will allow
us to more easily produce proof certificates.

References

1. Fadi A Aloul, Igor L Markov, and Karem A Sakallah. SHATTER: efficient symmetry-breaking for
boolean satisfiability. In Proceedings of the 40th annual Design Automation Conference, pages
836-839. ACM, 2003.

2. Carlos Areces, David Déharbe, Pascal Fontaine, and Ezequiel Orbe. SYMT: finding symmetries in
SMT formulas. In SMT Workshop 2013 11th International Workshop on Satisfiability Modulo Theories,
2013.

3. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In
1JCAI, volume 9, pages 399-404, 2009.

4. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi¢, Tim King,
Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Computer Aided Verification, volume 6806 of Lecture Notes in Computer Science, pages 171-177.
Springer Berlin Heidelberg, 2011.

5. Sam Bayless, Noah Bayless, Holger H Hoos, and Alan J Hu. SAT modulo monotonic theories. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

6. Belaid Benhamou, Tarek Nabhani, Richard Ostrowski, and Mohamed Réda Saidi. Enhancing clause
learning by symmetry in SAT solvers. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE
International Conference on, volume 1, pages 329-335. IEEE, 2010.

7. Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. 10S Press, February 2009.

8. Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA algebra system I: The user language.
Journal of Symbolic Computation, 24(3):235-265, 1997.

9. Thomas Bouton, Diego Caminha B De Oliveira, David Déharbe, and Pascal Fontaine. VERIT: an open,
trustable and efficient SMT-solver. In Renate A. Schmidt, editor, Automated Deduction — CADE-22,
volume 5663 of LNCS, pages 151-156. Springer Berlin Heidelberg, 2009.

10. Curtis Bright, Vijay Ganesh, Albert Heinle, lias Kotsireas, Saeed Nejati, and Krzysztof Czarnecki.
MATHCHECK2: A SAT+CAS verifier for combinatorial conjectures. In Computer Algebra in Scientific
Computing (to appear). Springer Berlin Heidelberg, 2016.

11. Bruce W Char, Gregory J Fee, Keith O Geddes, Gaston H Gonnet, and Michael B Monagan. A tutorial
introduction to MAPLE. Journal of Symbolic Computation, 2(2):179-200, 1986.

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 29

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

Y-Chuang Chen and Kun-Lung Li. Matchings extend to perfect matchings on hypercube networks. In
Proceedings of the International MultiConference of Engineers and Computer Scientists, volume 1.
Citeseer, 2010.

Charles J. Colbourn and Jeffrey H. Dinitz, editors. Handbook of Combinatorial Designs. Discrete
Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second
edition, 2007.

Paul T Darga, Karem A Sakallah, and Igor L Markov. Faster symmetry discovery using sparsity of
symmetries. In Proceedings of the 45th annual Design Automation Conference, pages 149-154. ACM,
2008.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 337-340. Springer, 2008.

David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Exploiting symmetry
in SMT problems. In Automated Deduction—-CADE-23, pages 222-236. Springer, 2011.

S. Devos, M., Norine. Edge-antipodal Colorings of Cubes. Open Problems Garden., 2008.

Grégoire Dooms, Yves Deville, and Pierre Dupont. CP(Graph): Introducing a graph computation
domain in constraint programming. In Principles and Practice of Constraint Programming-CP 2005,
pages 211-225. Springer, 2005.

Rodney G Downey and Michael R Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

Niklas Een and Niklas Sorensson. MINISAT: A SAT solver with conflict-clause minimization. Sat,
5:8th, 2005.

Tomads Feder and Carlos Subi. On hypercube labellings and antipodal monochromatic paths. Discrete
Applied Mathematics, 161(10):1421-1426, 2013.

Jiff Fink. Perfect matchings extend to Hamilton cycles in hypercubes. Journal of Combinatorial
Theory, Series B, 97(6):1074-1076, 2007.

Jiff Fink. Connectivity of matching graph of hypercube. SIAM Journal on Discrete Mathematics,
23(2):1100-1109, 2009.

Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216-231, 2005. Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

Vijay Ganesh and David L Dill. A decision procedure for bit-vectors and arrays. In Computer Aided
Verification, pages 519-531. Springer, 2007.

Vijay Ganesh, Charles W O’donnell, Mate Soos, Srinivas Devadas, Martin C Rinard, and Armando
Solar-Lezama. LYNX: A programmatic SAT solver for the RNA-folding problem. In Theory and
Applications of Satisfiability Testing—SAT 2012, pages 143-156. Springer, 2012.

Martin Gebser, Tomi Janhunen, and Jussi Rintanen. SAT modulo graphs: Acyclicity. In Logics in
Artificial Intelligence, pages 137-151. Springer, 2014.

Ian P Gent, Karen E Petrie, and Jean-Francois Puget. Symmetry in Constraint Programming. Handbook
of Constraint Programming, pages 329-376, 2006.

Ian P Gent and Barbara Smith. Symmetry breaking during search in constraint programming. Citeseer,
1999.

Petr Gregor. Perfect matchings extending on subcubes to Hamiltonian cycles of hypercubes. Discrete
Mathematics, 309(6):1711-1713, 20009.

Jacques Hadamard. Résolution d’une question relative aux déterminants. Bull. Sci. Math., 17(1):240—
246, 1893.

A Hedayat and WD Wallis. Hadamard matrices and their applications. The Annals of Statistics,
6(6):1184-1238, 1978.

Marijn JH Heule, WA Hunt, and Nathan Wetzler. Trimming while checking clausal proofs. In Formal
Methods in Computer-Aided Design (FMCAD), 2013, pages 181-188. IEEE, 2013.

Marijn JH Heule, Oliver Kullmann, and Victor W Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. arXiv preprint arXiv:1605.00723, 2016.

Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of
the ACM (JACM), 48(4):723-760, 2001.

Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In David Applegate, Gerth Stglting Brodal, Daniel Panario, and Robert Sedgewick,
editors, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth
Workshop on Analytic Algorithms and Combinatorics, pages 135-149. SIAM, 2007.

30

Edward Zulkoski et al.

38.
39.

40.

41.

42.

43.

44,
45.

46.

47.

48.

49.

50.

51.
52.

53.

54.
55.

56.
57.
58.

59.
60.

61.

62.

63.

64.

65.

Boris Konev and Alexei Lisitsa. A SAT attack on the Erdds discrepancy conjecture. In SAT, 2014.
Tlias S Kotsireas. Algorithms and Metaheuristics for Combinatorial Matrices. In Handbook of
Combinatorial Optimization, pages 283-309. Springer New York, 2013.

Tlias S. Kotsireas, Christos Koukouvinos, and Jennifer Seberry. Hadamard ideals and Hadamard
matrices with circulant core. 2006.

Tlias S. Kotsireas, Christos Koukouvinos, and Jennifer Seberry. Hadamard ideals and Hadamard
matrices with two circulant cores. European Journal of Combinatorics, 27(5):658-668, 2006.
Christos Koukouvinos and Stratis Kounias. Hadamard matrices of the Williamson type of order 4 - m,
m = p - q an exhaustive search for m = 33. Discrete mathematics, 68(1):45-57, 1988.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential recency weighted
average branching heuristic for SAT solvers. In Dale Schuurmans and Michael P. Wellman, editors,
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pages 3434-3440. AAAI Press, 2016.

Vladimir Lifschitz. What is answer set programming?. In AAAI, volume 8, pages 1594-1597, 2008.
Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. ALLOY *: A general-purpose
higher-order relational constraint solver. In 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 609-619, 2015.

David E Muller. Application of Boolean Algebra to Switching Circuit Design and to Error Detection.
Electronic Computers, Transactions of the IRE Professional Group on Electronic Computers, EC-
3(3):6-12, 1954.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and abstract DPLL modulo
theories. In Franz Baader and Andrei Voronkov, editors, LPAR, volume 3452 of Lecture Notes in
Computer Science, pages 36-50. Springer, 2004.

Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. ISABELLE/HOL.: a proof assistant for
higher-order logic, volume 2283. Springer Science & Business Media, 2002.

Dragomir 7 Pokovi¢. Williamson matrices of order 4n for n = 33, 35, 39. Discrete mathematics,
115(1):267-271, 1993.

Dragomir Z Pokovié and Ilias S Kotsireas. Compression of periodic complementary sequences and
applications. Designs, Codes and Cryptography, 74(2):365-377, 2015.

Raymond EAC Paley. On Orthogonal Matrices. J. Math. Phys., 12(1):311-320, 1933.

Irving Reed. A Class of Multiple-Error-Correcting Codes and the Decoding Scheme. Transactions of
the IRE Professional Group on Information Theory, 4(4):38-49, 1954.

Frank Ruskey and Carla Savage. Hamilton cycles that extend transposition matchings in Cayley graphs
of S,,. SIAM Journal on Discrete Mathematics, 6(1):152—-166, 1993.

Karem A Sakallah. Symmetry and satisfiability. Handbook of Satisfiability, 185:289-338, 2009.
Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling
and Computation, 3:141-224, 2007.

Jennifer Seberry. Library of Williamson Matrices. http://www.uow.edu.au/"jennie/
WILLIAMSON/williamson.html.

Neil Sloane. Library of Hadamard Matrices. http://neilsloane.com/hadamard/.

Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, and Naoyuki Tamura. Incre-
mental SAT-based method with native Boolean cardinality handling for the Hamiltonian cycle problem.
In Logics in Artificial Intelligence, pages 684—693. Springer, 2014.

W. A. Stein et al. Sage Mathematics Software (Version 6.3), 2010.

James Joseph Sylvester. Thoughts on inverse orthogonal matrices, simultaneous sign successions, and
tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work,
and the theory of numbers. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 34(232):461-475, 1867.

The CoQ development team. The COQ proof assistant reference manual. LogiCal Project, 2004.
Version 8.0.

Marc Thurley. SHARPS AT—counting models with advanced component caching and implicit BCP. In
Theory and Applications of Satisfiability Testing—SAT 2006, pages 424—-429. Springer, 2006.

Emina Torlak. A constraint solver for software engineering: finding models and cores of large relational
specifications. PhD thesis, Massachusetts Institute of Technology, 2009.

Miroslav N Velev and Ping Gao. Efficient SAT techniques for absolute encoding of permutation
problems: Application to Hamiltonian cycles. In SARA, 2009.

Joseph L Walsh. A Closed Set of Normal Orthogonal Functions. American Journal of Mathematics,
45(1):5-24, 1923.

http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html
http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html
http://neilsloane.com/hadamard/

Combining SAT Solvers with CAS to Verify Combinatorial Conjectures 31

66.

67.

68.

69.
70.
71.

Stéfan van der Walt, S. Chris Colbert, and Gaél Varoquaux. The NUMPY array: A structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22-30, 2011.

Nathan Wetzler, Marijn JH Heule, and Warren A Hunt Jr. DRAT-TRIM: Efficient checking and
trimming using expressive clausal proofs. In International Conference on Theory and Applications of
Satisfiability Testing, pages 422-429. Springer, 2014.

John Williamson. Hadamard’s Determinant Theorem and the Sum of Four Squares. Duke Math. J,
11(1):65-81, 1944.

Stephen Wolfram. The MATHEMATICA Book, version 4. Cambridge University Press, 1999.

Ed Zulkoski and Vijay Ganesh. SageSAT, 2015. https://bitbucket.org/ezulkosk/sagesat.

Edward Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki. MATHCHECK: A math assistant based on a
combination of computer algebra systems and SAT solvers. In International Conference on Automated
Deduction, Berlin, Germany, 08/2015 2015. Springer, Springer.

https://bitbucket.org/ezulkosk/sagesat

	Introduction
	Background
	SAT+CAS Combination Architecture
	Two Results regarding Open Conjectures over Hypercubes
	Search for Williamson Generated Hadamard Matrices using SAT+CAS
	Performance Analysis of MathCheck
	Verification of Results
	Related Work
	Conclusions and Future Work

