Impact of Community Structure on
SAT Solver Performance

Zack Newsham'!, Vijay Ganesh',

Sebastian Fischmeister!, Gilles Audemard?, and Laurent Simon?

! University of Waterloo, Waterloo, Ontario, Canada
2 Laboratoire Bordelais de Recherche en Informatique, Bordeaux Cedex, France
3 Université Lille-Nord de France, CRIL - CNRS UMR 8188, Artois, F-62307 Lens

Abstract. Modern CDCL SAT solvers routinely solve very large in-
dustrial SAT instances in relatively short periods of time. It is clear that
these solvers somehow exploit the structure of real-world instances. How-
ever, to-date there have been few results that precisely characterise this
structure. In this paper, we provide evidence that the community struc-
ture of real-world SAT instances is correlated with the running time of
CDCL SAT solvers. It has been known for some time that real-world
SAT instances, viewed as graphs, have natural communities in them. A
community is a sub-graph of the graph of a SAT instance, such that this
sub-graph has more internal edges than outgoing to the rest of the graph.
The community structure of a graph is often characterised by a quality
metric called Q. Intuitively, a graph with high-quality community struc-
ture (high Q) is easily separable into smaller communities, while the one
with low Q is not. We provide three results based on empirical data which
show that community structure of real-world industrial instances is a bet-
ter predictor of the running time of CDCL solvers than other commonly
considered factors such as variables and clauses. First, we show that there
is a strong correlation between the Q value and Literal Block Distance
metric of quality of conflict clauses used in clause-deletion policies in
Glucose-like solvers. Second, using regression analysis, we show that the
the number of communities and the Q value of the graph of real-world
SAT instances is more predictive of the running time of CDCL solvers
than traditional metrics like number of variables or clauses. Finally, we
show that randomly-generated SAT instances with 0.05 < @ < 0.13 are
dramatically harder to solve for CDCL solvers than otherwise.

1 Introduction

In the last few years, we have witnessed impressive improvements in the per-
formance of conflict-driven clause-learning (CDCL) Boolean SAT solvers over
real-world industrial SAT instances, despite the fact that the Boolean satisfia-
bility problem is known to be NP-complete and the worst-case time complexity
of our best solvers is exponential in the size of the formula. What is even more
impressive is that these solvers perform extremely well even for never-before-
seen classes of large industrial instances, where the biggest instances may have

upwards of 10 million clauses and millions of variables in them. In other words,
one cannot reasonably argue that these solvers are being hand-tuned for every
class of real-world instances. It is all but clear that CDCL solvers employ a very
general class of techniques, that have been robustly implemented and continu-
ously tested for many applications ranging from software engineering to AIl. All
of this begs the question why CDCL solvers are so efficient, and whether they
are exploiting some structural features of real-world instances. It is this question
that we address in this paper.

In this paper, we present three results that show that there is correlation
between the presence of natural communities [6] in real-world SAT instances [3,
4] and the running time of MiniSAT CDCL solver [7] (by extension many other
CDCL SAT solvers that are either built using MiniSAT code or use the most
important techniques employed by CDCL SAT solvers). Informally, a commu-
nity [6] in a SAT formula, when viewed as the variable-incidence graph 4, is a
sub-graph that has more edges internal to itself than going out to the remain-
der of the graph. There is previous work pointing to some correlation between
community structure in SAT instances and performance of CDCL solvers [2].
However, we provide much stronger evidence as discussed in the Contributions
sub-section below.

We characterise the structure of SAT instances through a well-known metric
called the @ value [6] and the number of communities present in its graph. The Q
value is a widely-accepted quality metric that measures whether the communities
in a graph are easily separable. In particular, formulas ® with high Q tend to have
few inter-community edges relative to the number of communities, while those
with low Q have lots of inter-community edges.

Contributions:

1. We show that there is a strong correlation between Literal Block Distance
(LBD), introduced in a paper [5] by some of the authors on learnt clause
quality, and number of communities. This correlation fits better and better
as the search progresses. In their original paper [5], the authors suggested
that the quality of a learnt clause can be measured using the LBD metric.
I.e. the lower the LBD the better the learnt clause. They also suggested a
learnt clause deletion policy, wherein clauses with high LBD were marked for
deletion. The result we found in this paper suggests that low LBD clauses
also are shared by very few communities.

2. We performed a regression analysis of the performance of the MiniSAT [7]
solver over SAT 2013 competition instances [1], using a variety of factors
that characterise Boolean formulas including number of variables, number
of clauses, number of communities, Q and even ratios between some of these

4 A variable-incidence graph of a Boolean SAT formula is one where the variables of
the formula are nodes and there is an edge between two nodes if the corresponding
variables occur in the same clause.

5 In the rest of the paper, we do not distinguish a formula from its variable-incidence
graph.

factors. We found that the number of communities and Q were more cor-
related with the running time of MiniSAT over these instances (real-world,
hard combinatorial, and random) than the traditional factors like number of
variables, clauses or the clause-variable ratio.

3. Additionally, we generated approximately 500,000 random Boolean formu-
las and made the surprising finding that MiniSAT finds it hard to solve
instances with @ value lying in the range from 0.05 to 0.13, whereas it was
able to easily solve the ones outside this range. While previous work [11]
has shown that the clause-to-variable ratio is predictive of solver run time
on randomly-generated instances (phase transition at clause-to-variable ra-
tio of 4.2 [11]), this metric is not predictive at all of solver efficiency on
real-world instances [15]. By contrast, according to our experiments, Q and
number of communities measure for both real-world and random instances
are correlated with the running time of MiniSAT (and by extension all solvers
that are significantly similar to it algorithmically) on these instances.

2 Background

In this Section, we provide some background on regression analysis, the concept
of the community structure of graphs and how it relates to SAT formulas.

2.1 Community Structure of SAT Formulas

The idea of decomposing graphs into natural communities [6,17] arose in the
study of complex networks such as the graph of biological systems or the In-
ternet. Informally, a network or graph is said to have community structure, if
the graph can be decomposed into sub-graphs where the sub-graphs have more
internal edges than outgoing edges. Each such sub-graph (aka module) is called
a community. Modularity is a measure of the quality of the community structure
of a graph. The idea behind this measure is that graphs with high modularity
have dense connections between nodes within sub-graph but have few inter-
module connections. It is easy to see informally that maximising modularity is
one way to detect the optimal community structure inherent in a graph. Many
algorithms [6, 17] have been proposed to solve the problem of finding an optimal
community structure of a graph, the most well-known among them being the
one from Girvan and Newman [6]. The quality measure for optimal community
structure is often referred to as the QQ value, and we will continue to call it simi-
larly. There are many different ways of computing the Q value and we refer the
reader to these paper [6,17,12].

We experimented with two different algorithms the Clauset-Neuman-Moore
(CNM) algorithm [6] and the online community detection algorithm (OL) [17].
While we did find that the CNM algorithm resulted in a better community
structure — evidenced by fewer communities with few links between them —
we chose the OL algorithm because of its vastly superior run time. This was of
particular importance due to the sheer size and number of the SAT instances

we processed. Our initial experiments were conducted with an implementation
of the CNM algorithm, then repeated with the OL algorithm. The results we
present in Section 3.4 were observed, regardless of the choice of algorithm.

2.2 Linear Regression

In this paper we make use of linear regression techniques for the result that
correlates the Q value and number of communities with the running time of the
MiniSAT CDCL SAT solver. In case the reader is not familiar with this topic,
we provide a very brief description of the basic ideas involved.

Given multiple independent factors and a single dependent variable, linear
regression can be used to determined the relationship between the factors and the
variables based on a provided model. For the scope of this paper the dependent
variable will always be log(time), while the independent factors (such as Q value,
number of communities, variables, and clauses) will be appropriately specified
for each experiment in Section 3.4. This model can either look only at the main
effects of the factors specified, or at both the effects of factors and the interactions
between them.

We provide a few important definitions below:

ANOVA stands for analyses of variance. In the scope of this paper, it is gener-
ated by the linear regression, and used to understand the influence that specific
factors and interactions between factors have on the dependent variable.

R? represents the amount of variability in the data that has been accounted for
by the model and is used to measure the goodness of fit of the model. It ranges
from zero to one with one representing a perfect model. Due to the nature of
the calculation, the R? value will increase when additional factors are added to
the model. In this paper, we refer to the Adjusted R? which is modified to only
increase if an added factor contributes positively to the model.

Confidence Levels are used to specify a certain level of confidence that a given
statement is true. They can be used to calculate the likelihood of a given set
of input values resulting in a given output (for example time), or they can be
used to estimate the likelihood that a factor in a model is significant. They
are measured in percent, typical values are 99.9, 99 and 95. Any result with
a confidence level below 95% is considered unimportant in the context of this
paper.

Confidence Intervals are used to provide a range for a value at a given con-
fidence level, which is usually set to 95% or 99%. They show that with a given
percentage probability, an estimated value will lie between a certain range.
Kolmogorov—Smirnov test is used to provide quantitative assurances that a
provided sample belongs to a specified distribution, it results in a value between
zero and one, with values approaching zero indicating that the provided sample
does belong to the specified distribution.

Residuals is the difference between a fitted dependent variable and the corre-
sponding provided dependent variable. It represents the amount of error for a
given set of input factors when calculating the output.

3 Experimental Results

In this Section we describe our experimental results that correlate Q value/the
number of communities with the running time of two CDCL solvers we consid-
ered in our experiments, namely, MiniSAT [8] and Glucose [5].

3.1 Correlation between LBD and Community Structure

In this section, we propose to link the number of communities contained in a
clause with an efficient measure used in recent CDCL (Conflict-Driven Clause-
Learning) solvers to score learnt clause usefulness. Interestingly, this measure is
used in most of today’s best SAT solvers.

We assume that the reader is familiar with the basic concepts and techniques
relevant to CDCL SAT solvers. Briefly, these solvers branch by making decisions
on the value of literals, and at any step of the search, ensure that all the unit
clauses w.r.t the current partial assignment are correctly propagated until either
an empty clause is found (the input formula is UNSAT') or a complete assignment
is found (the input formula is SAT). The important point to be emphasised is
that solvers learn clauses at a fast rate (generally around 5000 per seconds),
which can overwhelm the memory of the system unless some steps are taken to
routinely get rid of some of them. Such learnt clause deletion policies have come
to be recognised as crucial to the efficiency of solvers. The trick to the success of
such deletion policies is that somehow the solver has to differentiate good clauses
from the ones that are not so good.

Prior to the 2009 version of the Glucose solver [5], deletion policies were
primarily based on the past VSIDS activity of the clauses, i.e., learnt clauses
with low VSIDS scores were deleted. However in their paper [5], the authors
proposed that a better scoring mechanism for learnt clauses is to rank them
by the number of distinct decision levels the variables in these clauses belonged
to. This measure is called the Literal Block Distance (LBD) of a clause. The
smaller the LBD score of a clause, the higher its rank. The intuition behind this
scoring mechanism is the following: The lower the LBD score of a clause, the
fewer the number of decision levels needed for this clause to be unit propagated
or falsified again during the search. Clauses with LBD score of 2 are called glue
clauses, because it allows for merging (glue) of two blocks of propagations with
the aim of removing one decision variable (this notion in turn inspired the name
of the Glucose solver). It is important to note that this behaviour is more likely
to happen when using the phase saving heuristic for branching [14], because all
variables are set to their last propagated value when possible.

The hypothesis we test in this sub-section is that the notion of blocks of
propagations (i.e. a decision variable and all the propagated variables by unit
propagation at the same decision level) is highly correlated to the idea of com-
munities. To be more precise, if an input instance has high-quality community
structure (communities with few inter-community edges) then we hypothesise
that the conflict clauses that are shared between fewer communities are likely to
cause more propagation per decision and hence are likely to have a lower LBD

score. We verify our hypothesis, namely, that there is indeed a strong relation-
ship between the number of communities of a clause (initial or learnt) and its
LBD score computed by Glucose.

Intuitively, we consider clauses that are shared between very few communities

as higher quality than the ones shared between many communities, because such
clauses are localised to a small set of communities possibly enabling the solver to
in-effect partition the problem into many “small set of communities” and solve
them one at a time.
Experiment Set up: We limit our study to the set of industrial instances of
the SAT 2013 competition (Applications category). This is in line with our ob-
servation that SAT instances obtained from real-world applications have good
community structure, and consequently the notion of LBD scoring will likely
have the biggest impact on performance for such instances than otherwise. Put
it differently, if their is indeed a relationship between LBD and community struc-
ture of SAT instances, we hope to characterise it in this set of problems first. For
our experiment, we store, for each formula of the 189 instances (SAT’13 Com-
petition, Application Track), the value of the LBD and the number of different
communities of each learnt clauses. (There are 300 application instances in the
SAT’13, however we were able to compute the communities of only 189 of them
due to resource constraints.)

We would like to emphasise few points here: (1) First, all instances were pre-
processed using the SatELite simplifier before any experiments were conducted
for this study. All CDCL solvers have pre-processing simplifying routines in
them. It is very likely that these kind of simplified formulas are representative
of the inherent structure of formulas CDCL solvers are efficient on. (2) Second,
we computed the community structure using the Newman algorithm [12] (aka
CNM algorithm) on the variable-incidence graph representation of the formula.
Results were stored in a separate file once for all the experiments. For each SAT
instance, the corresponding communities were first labeled. Then, for every in-
stance we maintained a map from variables occurring in that instance to the
label of the corresponding community the variable belonged to. (3) Third, Glu-
cose was launched on these instances without any information regarding their
community structure computed in step (2). Glucose computed the LBD values
for the input instances, and stored them in a large trace file that was analysed
later: for each instance, for each learnt clause, we compared the LBD value of
that learnt clause and computed, thanks to (2), the number of distinct commu-
nities the learnt clause contained. Finally, note that we used a maximum number
of conflicts for our study, not a time out. In Section 3.2, the maximum conflicts
studied is set to the first 20,000 conflicts. In the Section 3.3, it is set to 100,000.
Those values were chosen w.r.t. the statistical tools we used.

3.2 Observing the clear relationship between Communities and
LBD by Heatmaps

It is not trivial to express a relationship between thousands of values, following
unknown distribution functions, on hundreds of problems. Hence, to show the

(a) dated-5-13-u (138,808 / (b) aaailO-planning (50,277 (c) rbclxits_14 (2,220 / 725
97,775 / 0.9) / 12776 / 0.91) / 0.53)

Fig. 1: Relationship between Literal Block Distance (LBD) and communities for a
selection of instances. The x-axis corresponds to LBD, the y-axis to communities.
Blue intensity represents the frequency of learnt clauses with the considered LBD
and community value. For each instance, we provide in parenthesis, the number
of variables, the number of communities, and the quality value (Q). The figure
is analysed in Section 3.2

general trend, we chose to build one heatmap per instance: we compute the
number of occurrences of each couple (LBD,Community) on the considered
problem and assign the intensity of a colour with respect to this number of
occurrences. The result is shown for some characteristic instances Figure 1. As
we can see, there is an obvious and clear relationship on the first two instances
(a, b) which are the most frequent cases. Intensive colours follow the diagonal:
many clauses have approximatively the same LBD and the same number of
communities. This behaviour appears in most cases. All heatmaps are available
on the web (a temporary url for the reviewing process available on request), with
more or less a strong diagonal shape.

From these figures we can conclude that there has to be a strong relation-
ship between LBD and number of communities. Small LBD learnt clauses add
stronger constraints between fewer communities. This may allow the solver to
focus its search on a smaller part of the search tree, avoiding scattering, the
phenomena where the solver jumps between lots of communities creating learnt
clauses that link these communities together thus making the structure of the
SAT instance worse and consequently harder to solve. We think this study gives
a new point of view of LBD and provides a new explanation of its efficiency. Of
course, there exists a few cases that do not exhibit such a relationship. This is
the case, for example, for the last example provided in the Figure 1.c. In this
instance, it seems that in many cases all learnt clauses involve 15 communities
and more than ten decision levels.

We do not yet have strong evidence that correlates classes of instance, and the
average number of communities that a learnt clause belongs to. Our suspicion is
that all the original problems for which CDCL solvers were designed, the BMC
problems, may exhibit a particularly good relationship.

3.3 How close are Communities and LBD?

T T T T T T T
LBD and communities — % 08 T T T
Size and LBD i x
Size and communities —¥— i
07
08 4 2
]]
H 06 | x
x
f E o
* 5 x
7 S os| i
= 06 . < 2
g j g x
£)l s x
z ¥ Z oap - x
H / % ¥
s f z
S04 ¥ 7 a *
; ; L
' P *
i x *
x
1 L 3
p ®
| i x
& x
B 10,000 confliets x
50000 conflicts
. 0 L . . I . s .

0 20 40 60 80 100 120 140 160 180 200 o 0.1 02 03 04 05 06 07 03

nb instances Su(HCommunities - #Blocks|) with 100,000 conflicts

(a) Cumulative distribution function of stan- (b) Evolution of the standard deviation dur-
dard deviation between different measures ing the search

Fig.2: Some standard deviations. This figure is analysed Section 3.3

If the LBD seems heavily related to communities, the question is now how
close to the LBD is it? In particular, on some extreme cases, the simple size of
a clause could be a good predictor for its number of communities (clearly, the
larger the clause is, the bigger the number of communities can be). Thus, we
also have to ensure that (1) the LBD score is more accurate than the size of the
clause for predicting the number of communities and (2) the more we update the
LBD, the closest we are to the number of communities (the solver is consistent
along its search).

In answer to the above question we present two figures: 2.a and 2.b. For both
figures we computed each problem instance X, for each learnt clause ¢ during
the first 100,000 conflicts of Glucose solving X, the standard deviation dx of the
values:

1. |LBD(c) — #Com(c)|, representing the dispersion of the differences between
the LBD of a clause ¢ and its number of communities, shown as “LBD and
communities” in the figure;

2. |size(c) — #Com(c)|, representing the dispersion of the differences between
the size of a clause ¢ and its number of communities, shown as “Size and
communities”;

3. |LBD(c) — size(c)|, representing the dispersion of the differences between
the LBD of a clause ¢ and its size, shown as “Size and LBD”;

In the first experiment, we try to see how close LBD and size are to the
number of communities. We represent in Figure 2 the cumulative distribution

function of all the dx for each of the three cases. This figure clearly highlights that
the relationship between LBD and number of communities is much more accurate
(it is less than 0.1 for a large majority of instances) than the relationship between
size and LBD or between size and communities. Thus, as a first conclusion, we see
that, in the large majority of the cases, the LBD is really close to the number of
communities. The only hypothesis here is that the standard deviation has some
meaning over the analysed data, which seems to be a plausible hypothesis.

The last experiment we conducted studies the evolution of LBD scores dur-
ing the execution of Glucose. We focus now on the values of §x accounting for
the dispersion of values |LBD(c) — #Com(c)| for each instance X. We compare
the values obtained after 10,000 conflicts with the values obtained after 100,000
(shown as “10,000 conflicts” on the figure) and the values obtained after 50,000
conflicts with, again, the values obtained after 100,000 (shown as “50,000 con-
flicts”). The comparison is done by the two scatter plots in Figure 2.b. Two
conclusions can be drawn from this. It seems clear that the longer the solver
is running, the more accurate it is at estimating the number of communities of
clauses by the LBD. This may also be explained by the fact that, the longer
the solver is running, the longer it is working on fewer communities/LBD, thus
focusing on small subparts of the problem. However, which one of these two
hypothesis is more accurate is still an ongoing work.

3.4 Experimental Setup: Correlation between Solve Time and
Community Structure

In this section, we present the hypothesis that it is possible to correlate the
characteristics of SAT instance C and the running time of CDCL SAT solvers
in solving C'. Previous attempts in this direction have largely focused on charac-
terising the hardness of solving SAT instances in terms of number of variables,
clauses or the clause-variable ratio [9]. In our experiments, we go beyond vari-
ables, clauses, and their ratio to also considering number of communities and
the Q value (modularity). To test this hypothesis we performed two experiments.
The first experiment we did was to correlate the above-mentioned characteris-
tics and the running time of the MiniSAT solver over all instances in the SAT
2013 competition [1]. The second experiment we performed was a controlled one,
wherein, we randomly-generated instances varying a subset of their characteris-
tics such as number of variables, clauses, QQ value, and number of communities
and keeping the rest constant. We then ran MiniSAT on these randomly gener-
ated instances and recorded its running time. We then plotted the running time
against changing @Q to see how the two are correlated. All the data for these
experiments is available at [13].

3.5 Community Structure and SAT 2013 Competition Instances

We performed the following steps in this experiment. First, we attempted to
calculate the community structure of every SAT instance from all categories
(hard combinatorial, random, and application) the SAT 2013 competition [1].

For this we used the OL algorithm [17]. Due to the size of some of the formula it
was not possible to get this information for every instance. As such we were only
able to run the community structure analysis on approximately 800 instances.
The generated results were then aggregated with the solve time of the MiniSAT
solver (from the SAT 2013 competition website [1]) for each instance.

The analysis was performed on the log(time) rather than raw recorded time
due to the presence of a large number of timeouts, which would have a skewed
distribution. Having said that, our results are similarly strong without this con-
straint. In addition to this, we standardised our data to have a mean of zero and
a standard deviation of one. This is standard practice when performing regres-
sion on factors that have large differences in scale, and ensures that importance
is not falsely reported based only on scale.

After formatting the data as described, we fitted a linear regression model
to it using a stepwise regression technique to choose the best model, this was
identified as:

log(time) = |V| @ |CL| © Q© |CO| ® QCOR © VCLR

Where V is the set of all variables in a formula, C'L is the set of all clauses, CO

is the set of all communities, QCOR is the ratio of IC%\’ and VCLR is the ratio

of % In this model the @ operator denotes that the factor and all interactions
with all other factors were to be considered. Performing the regression resulted in
a residual vs fitted plot, shown in Figure 3(b) where the x-axis shows the fitted
values and the y-axis shows the residuals. As well as a normal quantile plot
shown in Figure 3(a) where the x-axis shows the standardised residuals plotted
against a randomly generated normally distributed sample with the same mean
and standard deviation on the y-axis. In the normal quantile plot, the presence
of a slight curve in the line is indicative that the distribution of the data may be
bimodal, as such we are unable to measure confidence intervals for the accuracy
of the model. In addition to this, the residual plot shows that the data may be
biased, but at least has relatively even variance. Unfortunately, the presence of
the timeout results has played a role in the biased nature of the experiment,
however dropping them from the results entirely leads to a bias in the opposite
direction.

The adjusted R? of our model is 0.5159. While this relatively low R? value
indicates that there is some factor we have not considered, our model is far better
than any previous model, which relied only on number of variables and clauses.
This model, which takes the form of

log(time) = |V| @ |CL| & VCLR

is also given for comparison and results in an adjusted R? of 0.3148 — making
it significantly less predictive than our model. In addition to this, the more
distinct S shape, and presence of sharp curves in Figure 4(a) shows that the
distribution of the data is less normal. This result is confirmed when using the
Kolomogorov-Sminov (KS) method to test goodness of fit. Our model results in

Normal Q-Q Residuals vs Fitted

Standardized residuals
Residuals

o o
< 4 & o e
a0
3 2 1 0 1 2 3 2 1 o 1
TheoroicalQuits Fitd vaues
Im("liime~clauses"vars"Q"coms*Q_coms*vars_clauses") Im("ltime~clauses*vars*Q"coms*Q_coms*vars_clauses")

(a) Plot of normal and theoretical (b) Residuals vs Fitted values
quantiles

Fig. 3: Plots for the model including community metrics R2 = 0.5159

Normal Q-Q Residuals vs Fitted
o s
g o4 2
L o
rd o
- .
< @ ug
. 1
3 2 1 0 1 2 3 2.0 15 1.0 0.5 0.0 05 10
Theoretical Quantiles itted values
Im(“Itime~vars*clauses*vars_clauses") Im("Itime~vars*clauses*vars_clauses")
(a) Plot of normal and theoretical (b) Residuals vs Fitted values
quantiles

Fig. 4: Plots for the model without community metrics R2 = 0.3148

a KS value of 0.1283 compared with the previously available model which gave
a KS value of 0.3154, this lack of normality makes it impossible to estimate
confidence intervals for the results. However, it is possible to rank the factors by
importance (because the data was standardised prior to regression). The results
in Figures 3(a) and 3(b) show that our model, while not perfect, is a major step
towards being a predictor for solve time. This is confirmed when viewing the
results of the regression shown in the Table 1 (This table can also be viewed
from our website [13]).

Bottomline Result: The main result we found from the regression is that
the Q factor is involved in every one of the significant interactions at a 99.9%
confidence level. In addition to this we found that |V| (number of variables)
alone is not significant, and |CL| (number of clauses) alone is only marginally
significant. Furthermore, |CO| (number of communities) proved to be the most

predictive effect, as well as being involved with numerous other interactions that
are also significant.

3.6 Community Structure and Random Instances

In this Section, we describe the experiments, where we ran MiniSAT on a large
set of randomly-generated SAT instances, to better understand the effects of
varying the various factors of the input formulas in a controlled fashion. We ran
a controlled experiment in which approximately 550,000 formulas were generated
and executed. In performing this experiment we discovered that there is a large
increase in average solution time when the 0.05 < @ < 0.13. This can be seen
clearly in Figure 5(a).

The formulas were generated by varying the number of variables from 500 to
2000 in increments of 100, the number of clauses from 2000 to 10,000 in incre-
ments of 1000, the desired number of communities from 20 to 400 in increments
of 20, and the desired Q value, from zero to one in increments of 0.01. Each
individual trial was repeated three times with the same characteristics. This was
necessary due to the non-deterministic nature of the generation technique. The
resulting experiments were ran in a random order for several hours to generate
a large volume of data.

To generate a specific instance we perform the following actions: Let us
assume that the set of variables be denoted as V ={V;:0<i < n,} where
n, is the desired number of variables. Similarly, let the set of groups be
G ={G, :0 <z <ngy} where ny is the desired number of groups. A group is
a rough estimate of a community, and is used only to guide the generator in
producing a structured problem.

First, we assign variables to groups such that each group
Gy ={Vy:y=ry*|G|+2;0< 1, < %}, where 7, is randomly selected.
Next, we generate the set of clauses C' = {C,:0 <z <n.} as follows, where
n. is the desired number of clauses such that C, = {V,1 V V,2 vV V.3}. Each
clause is constructed as follows: First, a group G, and a variable V,; € G,
are randomly selected. This is followed by a selection of another variable Vo

Factor Estimate [Std. Error [t value [Pr(> |t]) [Sig
|CO| -1.237e4+00 | 3.202e-01 | -3.864 | 0.000121 | ***
|CL|®Q ®QCOR -4.226e4-02 | 1.207e+02 | -3.500 | 0.000492 | ***
|ICLI®Q -2.137e+02 | 6.136e+01 | -3.483 | 0.000523 | ***
ICL|®Q®|CO|® QCOR® VCLR -1.177e+03 | 3.461e+02 | -3.402 | 0.000702 | ***
|CL|®Q ®|CO| -6.024e4-02 | 1.774e+02 | -3.396 | 0.000719 | ***
QO QRCOR 3.415e+02 | 1.023e+02 3.339 | 0.000881 | ***
Q 1.726e+02 | 5.200e+01 3.318 | 0.000947 | ***

Table 1: List of the factors with 99.9% significance level. ® indicates an interac-
tion between two or more factors and Sig stands for Significance. The full table
is listed in Appendix Table 2

Average Q Against Time Q Against Time(Uniform Random Sample) QAgainst Time(All)

4 -

0 100 20 30 40 50 60 700 800 %0
ima in Seconds
0 100 200 30 40 50 60 700 80 90

(a) Average Time (b) Stratified Sample (c) All instances
Fig.5: A plot of Q against time, for three different data sets

from either G, or V with probability of ¢ of being selected from G,. Finally, a
third variable V.3 is selected from either G, or V with probability of ¢ of being
chosen from G;. The value ¢ (lies between 0 and 1) can be used as a rough
estimator of (), the modularity of the formula and is provided as input to the
generator. The result is a randomly-generated 3-CNF formula.

During our analyses of the results, we discovered that our random generation
technique resulted in far more results in the 0.05 < @ < 0.12 range than in any
other range. To ensure that the results seen were not because of this discrepancy,
we re-ran many of the trials, focusing on data outside of this range, and generated
approximately another 307,000 formula.

To ensure an unbiased analyses we also performed basic analyses on a strat-
ified random sample taken uniformly across the range of Q. From the 545,000
results 2250 were randomly sampled, with 250 results taken from each range
of 0.1, as there were no results with @ > 0.9 this range was not included in
the sample. This process ensured their was no bias in the results based purely
on frequency. The resulting sample is shown in Figure 5(b) which shows that
when 0.05 < @ < 0.12, the formula take far longer to solve. while this range is
slightly different from the results of the full dataset (0.05 < @ < 0.13) This can
be explained by the reduced dataset.

Figure 5(b) appears to shows that for all values of @ < 0.05 or Q@ > 0.12,
almost all the formulas finish in approximately zero seconds, however this is only
because of the scale, in reality while a large number of them do complete very
quickly, in less than one second, numerous other results take varying amounts
of time anywhere between zero and 900 seconds (the timeout).

The data collected from each result is as follows: number of variables, number
of clauses, number of communities, Q metric, result and time, Prior to analyses
we ensured the quality of the experiments by checking that we had a good
distribution of results in both the SAT and UNSAT categories, and that in both
there was a reasonable distribution across time. While we did discover a more
even distribution of time in the case of the UNSAT vs SAT formula, it is not
enough to affect the results. Similarly, while the majority of the results are in
the lower end of the scale, this confirms the result that for the majority of the
range of Q, most SAT instances are relatively easy to solve. Once the distribution

of SAT vs UNSAT was determined, Q was plotted against time for all results
Figure 5(c). From this plots we see a very clear trend in the relationship between
Q and solution time, namely that when 0.05 < @ < 0.13 there is a significant
increase in average solution time. A more clear representation of these results is
Figure 5(a), which plots Q on the x-axis against the average execution time of
the formulas on the y-axis.

In addition to the result showing that when 0.05 < @ < 0.13 the formula is
hard, we also noticed several interesting features of these graphs. From these
graphs we made several observations; Firstly, when looking at the full dataset as
shown in Figure 5(c), it can be seen that none of the 2500 formula with a @ < 0.05
had a solve time of > 100ms. Secondly, while not immediately clear from looking
at Figure 5(c) we discovered that none of the SAT formula had a @ < 0.1096,
while we think it would be possible to generate a satisfiable formula that had a Q
value in this range, it does not typically occur in randomly generated instances.

Bottomline Result: The basic takehome message here is that, when we ac-
counted for potential bias in the generation process and eliminated instances that
were quick to solve, we got the following result: randomly-generated instances
with Q values in the range 0.05 < @ < 0.12 (for the reduced set of instances
uniformly binned for Q values ranging from 0 to 0.9 in increments of 0.1) were
unsually hard for MiniSAT to solve compared to instances outside this range,
and this result only depends on the Q value and not on any other factor such as
number of variables or clauses.

4 Related Work

In [3] Levy et al introduced the concept of SAT problems having community
structure. The paper showed that numerous problems in the SAT 2010 race
contained very high modularity compared to graphs of any other nature. It was
also suggested in this paper that SAT solvers are able to exploit this hidden
structure in order to achieve good solve times. However, the paper was unable
to explain what characteristics of community structure leads to poor or good
solve times. Also, in [4] the authors state that while SAT solvers have shown
improvements in solve times for numerous industrial applications, their has been
less success in improving the solve time of randomly generated instances. They
posit that this is due to the lack of structure present in randomly generated
instances.

In [16] Xu et al describe a SAT solver that chooses its algorithms based on
48 features of the input formula. While they did use certain graph theoretic
concepts, such as node-degree statistics, they did not consider the concept of
communities as a feature of the input. The list of 48 features could be used in a
more comprehensive model than the ones used in our regression. In [10] Habet
et al present an empirical study of the effect of conflict analyses on solution time
in CDCL solvers.

In [2] the authors present a the notion of fractal dimensions in SAT solvers,
they have discovered that as the SAT solver progresses the fractal dimension

increases when new learnt clauses are added to the formula. They have also dis-
covered that learnt clauses do not connect distant parts of the formula (ones
with long shortest paths between nodes), as one would expect. This is inter-
esting when combined with the work we present stating that clauses which are
comprised of variables in a small number of communities are more useful to the
solver. This means that even when a learnt clause that does connect distant
variable in the formula is added, it is not as useful as a clause that connects
locally occurring variables.

5 Conclusions

In this paper we presented evidence that the community structure present in real
world SAT instances is correlated with solution time of CDCL SAT solvers. First,
we highlighted a relationship between Literal Block Distance (LBD), a measure
indicating the importance of a learnt clause in CDCL solver, and community
structure. In particular, learnt clauses that are shared by few communities are
highly correlated with high-quality learnt clauses with low LBD scores. In other
words, we have a new measure (number of communities shared by a learnt clause)
of quality of learnt clauses that correlates with a very successful existing one
(LBD). This result provides new insights into the efficiency of the LBD measure
and should be considered to improve solver performance. Second, we introduced
a model, that while not perfect, is a first step towards a predictive model for
the solution time of SAT instances. Finally, we presented a result showing that
randomly generated instances are particularly difficult to solve, regardless of
number of clauses or variables, when their modularity is between 0.05 and 0.13.

6 Future Work

As mentioned in Section 3.4, our regression is one of the early predictive model
for solve time of a CDCL solver based on community structure. However, there
are many other factors not discussed in this paper that may play an important
role in determining solve time, factors such as: median/mean size of clauses,
the number of clauses that feature a subset of variables that appear together in
another clause, the number of unique pairs of variables appearing in a clause, or
the size of the largest clique in the variable graph. Any or all of these features
may play a role in determining solution time. In the future we intend to explore
as many of these, and as many of the 48 features from [16] as necessary to
improve our model. Another potential for research is implementing a solver that
takes advantage of community structure to improve solve time, this could be
implemented in several ways, one of which is to create a clause deletion heuristic
based on the community structure (as opposed to LBD deletion policy). Another
could be to implement a decision heuristic that chooses variables that appear
in learnt clauses with variables from very few number of communities. The idea
being the more local a conflict clause is to a community, the higher its quality.

References

10.

11.

12.

13.

14.

15.

16.

17.

2013 sat competition. http://satcompetition.org/2013/. Accessed: 2014-01-31.
Carlos Ansétegui, Maria Luisa Bonet, Jestis Girdldez-Cru, and Jordi Levy. The
fractal dimension of sat formulas. arXiv preprint arXiv:1308.5046, 2013.

Carlos Ansétegui, Jesis Girdldez-Cru, and Jordi Levy. The community structure
of sat formulas. In Theory and Applications of Satisfiability Testing-SAT 2012,
pages 410-423. Springer, 2012.

Carlos Ansétegui and Jordi Levy. On the modularity of industrial sat instances.
In CCIA, pages 11-20, 2011.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
SAT solvers. In proceedings of IJCAI pages 399-404, 2009.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical review E, 70(6):066111, 2004.

Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Theory and appli-
cations of satisfiability testing, pages 502—-518. Springer, 2004.

Niklas Een and Niklas Sérensson. Minisat: A sat solver with conflict-clause mini-
mization. Sat, 5, 2005.

Ian P Gent and Toby Walsh. The sat phase transition. In ECAI pages 105-109.
PITMAN, 1994.

Djamal Habet and Donia Toumi. Empirical study of the behavior of conflict anal-
ysis in cdcl solvers. In Principles and Practice of Constraint Programming, pages
678-693. Springer, 2013.

David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distributions
of sat problems. In AAAI volume 92, pages 459-465. Citeseer, 1992.

Mark EJ Newman. Fast algorithm for detecting community structure in networks.
Physical review E, 69(6):066133, 2004.

Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Lau-
rent Simon. Community Structure of SAT Instances Webpage with Data and Code.
https://ece.uwaterloo.ca/~vganesh/satcommunitystructure.html.

Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In proceedings of SAT, pages 294-299, 2008.

Moshe Vardi. Phase transition and computation complexity. http://www.lsv.
ens-cachan.fr/Events/fmt2012/SLIDES/moshevardi.pdf, 2012.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-
based algorithm selection for sat. J. Artif. Intell. Res.(JAIR), 32:565-606, 2008.
Wangsheng Zhang, Gang Pan, Zhaohui Wu, and Shijian Li. Online community
detection for large complex networks. In Proceedings of the Twenty-Third inter-
national joint conference on Artificial Intelligence, pages 1903—1909. AAAI Press,
2013.

7 Appendix

Factor Estimate | Std. Error | t value | Pr(> |¢]) | Sig
|CO| -1.237e+00 | 3.202e-01 | -3.864 | 0.000121 | ***
|CL|®Q ®QCOR -4.226e+02 | 1.207e+02 | -3.500 | 0.000492 | ***
|CLI®Q -2.137e+02 | 6.136e+01 | -3.483 | 0.000523 | ***
ICL|®Q®|CO|® QCOR® VCLR -1.177e+03 | 3.461e4+02 | -3.402 | 0.000702 | ***
ICLl®Q o |CO| -6.02404+02 | 1.774e4+02 | -3.396 | 0.000719 | ***
QO QCOR 3.415e+02 | 1.023e+02 | 3.339 | 0.000881 | ***
Q 1.726e+02 | 5.200e+01 | 3.318 | 0.000947 | ***
Qe |CO|®QCOR 9.451e+02 | 2.927e+02 | 3.229 | 0.001292 | **
QO |CO| 4.839e+02 | 1.503e+02 | 3.220 | 0.001335 | **
V] ®QCOR -3.177e+01 | 1.004e+01 | -3.164 | 0.001617 | **
|CL|®|V]|®VCLR -1.263e+01 | 4.503e+00 | -2.805 | 0.005163 | **
ICL|® |V|® QCOR ® VCLR -2.521e4+01 | 9.008¢4+00 | -2.798 | 0.005263 | **
V] -1.376e+01 | 4.947e+00 | -2.782 | 0.005526 | **
QCOR -1.057e+01 | 3.912e+00 | -2.701 | 0.007065 | **
ICL|® |V| ® QCOR 2.096e+01 | 7.894e-+00 | 2.656 | 0.008073 | **
(Intercept) -4.949e+4-00 | 1.950e+4-00 | -2.538 | 0.011327 *
|CL| ® QCOR 9.486e4-00 | 3.792e+00 | 2.502 | 0.012556 *
ICL| o |V 9.641e+00 | 3.933¢-+00 | 2.451 | 0.014456 | *
QCORG®VCLR 9.035e+4-00 | 3.789e+00 | 2.385 | 0.017323 *
VCLR 4.452e+00 | 1.892e4-00 | 2.353 | 0.018845 *
|CL| 4.299e+-00 | 1.894e+00 | 2.270 | 0.023507 *
V| ®© QCOR®VCLR 1.700e+01 | 7.556e+00 2.250 | 0.024755 *
[V|®@VCLR 8.059e+4-00 | 3.811e+00 | 2.115 | 0.034769 *
ICL|®|V|®Q®QCOR -4.68004+02 | 2.298¢4+02 | -2.036 | 0.042060 | *
cLle|VieQ -2.373e-+02 | 1.167e+02 | -2.034 | 0.042268 | *
ICLlo[VIeQoe|co| -6.59404+02 | 3.31504+02 | -1.980 | 0.047042 | *
ICL|®|V|©Q®|CO|®QCOR -1.286¢+03 | 6.469¢+02 | -1.988 | 0.047160 | *

Table 2: List of all significant effects, three stars indicates the highest level of
confidence that the effect is important. ® indicates an interaction between two

or more factors and Sig stands for Significance

