
Java Bytecode Modi�cation and Applet Security�Insik Shinyishin@cs.stanford.edu John C. Mitchellzmitchell@cs.stanford.eduComputer Science DepartmentStanford UniversityStanford, CA 94305AbstractWhile the Java Virtual Machine includes a bytecode veri�er that checks bytecodeprograms before execution, and a bytecode interpreter that performs run-time testssuch as array bounds and null-pointer checks, Java applets may still behave in waysthat are annoying or potentially harmful to users. For example, applets may mountdenial-of-service attacks, forge email or display misleading information in order to trickusers. With these concerns in mind, we present techniques that may be used to insertadditional run-time tests into Java applets. These techniques may be used to restrictapplet behavior or, potentially, insert code appropriate to pro�ling or other monitoringe�orts. The main techniques are class-level modi�cation, involving subclassing non-�nalclasses, and method-level modi�cation, which may be used when control over objectsfrom �nal classes is desired.1 IntroductionThe Java Language [12] has proven useful for a variety of purposes, including system de-velopment and the addition of \active content" to web pages. Although previous languageimplementations, such as Pascal and Smalltalk systems, have used intermediate bytecode,the use of bytecode as a medium of exchange places Java bytecode in a new light. To protectagainst execution of erroneous or potentially malicious code, the Java Virtual Machine ver-i�es code properties before execution and performs additional checks at run time. However,these tests will not protect against certain forms of undesirable run-time behavior, suchas denial-of-service attacks, irritating audio sounds, or violation of conventions regarding�submitted as a research paper on language design and implementation, analysis and design methods,software engineering practices, experienced with object-oriented applications and systems, or security.ycontact: Tel: 650-723-9445zcontact: Tel: 650-723-8634, Fax: 650-725-4671 1

hypertext links. Moreover, users cannot easily customize the tests that are performed sincethese are built into the Java Virtual Machine.The goal of our work is to develop methods for enforcing applet properties, in a mannerthat may be customized easily. In this paper, we propose a technique, called bytecodemodi�cation, through which we put restrictions on applets by inserting additional bytecodeinstructions that will perform the necessary run-time tests. These additional instructionsmay monitor and control resource usage, limit applet functionality, or provide control overinaccessible objects. While our techniques bear some relation to software fault isolation [13],we check di�erent properties and our code operations are speci�cally tailored to the �lestructure and commands of the Java Language. Our technique falls into two parts: class-level modi�cation and method-level modi�cation. In class-level modi�cation, references toone class are modi�ed to refer to another class. Since this method uses the class inheritance,it is simple and fast, but can not be applied to �nal classes and interfaces. In these cases,method-level modi�cation is used since it may be applied on a method-by-method basiswithout regard to class hierarchy restrictions.We have implemented these techniques in an HTTP proxy server that modi�es classesbefore they are received by the browser. Our proxy server is controlled by a user interfacethat runs as a Java applet and may be con�gured to block access to a speci�c sites, redirectrequests for special Java classes or eliminate tagged advertisements.In Section 2, we discuss several example Java applet attacks that are outside the scopeof the current Java veri�er and security model. We explain the bytecode modi�cationtechniques in Section 3 and present some examples in Section 4. Experimental performancedata appears in Section 5, with comparison to related work on safe execution of Java appletsin Section 6. We conclude in Section 7.2 Java Applet SafetyBefore describing a series of techniques for modifying Java bytecode programs, we givesome motivating examples of hazardous or undesirable Java applets. Each of the problemsoutlined in this section can be eliminated or contained using our approach.2.1 Denial of Service AttackThe Java Virtual Machine provides little protection against denial of service attacks. Anapplet can make the system unstable by monopolizing CPU time, allocating memory untilthe system runs out, or starving other threads and system processes. For example, an appletmay create huge black windows on the screen in such a way that the users cannot accessother parts of the screen, or it may open a large number of windows [5]. Many machineshave limits on the number of windows that can be open at one time and may crash if theselimits are exceeded. Since the safety of the Java runtime system may be threatened by2

inordinate system resource use, it is useful to have some mechanism to monitor and controlresource usage.2.2 Disclosure of Con�dential Information AttackMost browsers such as Navigator, Internet Explorer and HotJava, provide a network securitymode which allows an applet to connect to the web server from which it was loaded. Inspite of this security mode, an applet can send some con�dential information out throughvarious covert channels. A possible third-party channel is available with the URL redirectfeature. Normally, an applet may instruct the browser to load any page on the web. Anattacker's server could record the URL as a message, then redirect the browser to theoriginal destination [3]. Another channel is available with an ability that an applet cansend out an email message to any machine on the Internet [7]. If the web server is runningan SMTP mail daemon, the applet can interact with sendmail after connecting to port 25on the web server. This allows a hostile applet to forge email. One way to prevent thisform of email forgery is to disallow connections to port 25.Time-delayed access to �les also can be used as a covert channel [10]. Speci�cally,if an applet, A, with access to private information is prohibited from accessing the net,information can still be sent out by another applet, B, which shares a �le with appletA. Inter-applet communications using storage channels can be detected by monitoring theactions of applets through logging facilities.2.3 Spoo�ng AttackIn a spoo�ng attack, an attacker creates a misleading context in order to trick a user intomaking an inappropriate security-relevant decision [4]. Some applets display the URL thatwill be accessed when the the mouse is held over a graphic or link. By convention, the URLis shown in a speci�c position on the status line. If an applet displays a fake URL, the usercan be misled. This could allow an applet to mislead a user into connecting to a site thatis hazardous in some way. Fortunately, this spoo�ng attack can be controlled by enforcingconventions about the URL displayed on the status line.2.4 Annoyance AttackAn applet can annoy users with a very noisy sound which never ends. This form of soundattack exploits a useful feature of Java, the ability to play sound in the background. Toeliminate an annoying sound, however, users typically must kill the thread playing sound,disable the audio, or quit the browser. All of these can be inconvenient. Another possibleannoyance attack is to make the browser visit a given web site over and over, popping up anew copy of the browser each time. One way to manage annoying sounds is to provide the3

ability to turn the sound o�. To do so, the Java runtime system must monitor and controlobjects with sound.3 Java Bytecode Modi�cationThis paper presents a safety mechanism for Java applets that is su�cient to solve theproblems summarized above. The basic idea is to put restrictions on applets by insertingsafeguarding code. In the examples we have implemented and tested, safeguarding codemay monitor and control resource usage as well as limit the functionality of applets. Thisapproach is a form of software fault isolation [13], adapted to the speci�c structure andrepresentation of Java bytecode programs.Our safety mechanism substitutes one executable entity, such as a class or a method,with a related executable entity that performs additional run-time tests. For instance,a class such as Window can be replaced with a more restrictive class Safe$Window thatperforms additional security and sanity checks. (We use the pre�x Safe$ to indicate one ofour safe classes.) This safety mechanism must be applied before the applet is executed. Forconvenience in developing a proof of concept, applets are currently modi�ed within an HTTPproxy server that sits between a web server and a client browser. This implementation doesnot require any changes in the web server, Java Virtual Machine or web browser. Sinceapplets and the browser are not noti�ed of changes in the applet, subsequent requests forsafeguarded executable entities may be issued to the web server, which does not have them.This problem is handled by having the proxy redirect these requests to cites where thesafeguarding entities are actually stored.The following sections explain how modi�ed executable entities are inserted in Javabytecode. The modi�cations may be divided into two general forms, class-level and method-level modi�cations.3.1 Class-level Modi�cationA class such as Window can be replaced with a subclass of Window (which will be calledSafe$Window in this example) that restricts resource usage and functionality. For example,Safe$Window's constructor method can put a limit on how many windows can be open onthe screen. The method allows new windows to be created until the number of windowsexceeds the limit. If the limit is exceeded, the method throws an exception indicating thattoo many windows are open. Since Safe$Window is a subtype of Window, type Safe$Windowcan appear anywhere type Window is expected. Hence, the applet should not notice thechange, unless it attempts to create windows exceeding the limit.This example of class-level substitution is done by merely substituting references to classWindow with references to class Safe$Window. In Java, all references to strings, classes,�elds, and methods are resolved through indices into the constant pool of the class �le [6],4

class name index

class name

CONSTANT_Class entry

CONSTANT_Utf8 entry

CONSTANT POOLFigure 1: A class is represented with two entries in the constant pool
101

11

101

101
11

101
java/awt/Window Safe$Window

AfterBeforeFigure 2: Class-level modi�cation substitutes class referencewhere their symbolic names are stored. Therefore, it is the constant pool that should bemodi�ed in a Java class �le. In more detail, two entries are used to represent a class in theconstant pool. A class is represented by a constant pool entry tagged as CONSTANT Classwhich refers to a CONSTANT Uft8 entry for a UTF-8 1 string representing a fully quali�edname of the class, as shown in Figure 1.If we replace a class name of a CONSTANT Uft8 entry, Window, with a new class name,Safe$Window, the CONSTANT Class entry will represent the new class, Safe$Window, asshown in Figure 2.Class-level substitution requires a simple modi�cation of a constant pool entry, since ittakes advantage of the property of class inheritance. Obviously, however, the use of classinheritance prevents this approach from being applied to �nal classes or interfaces.1The Unicode Standard, version 1.1, and ISO/IEC 10646-1:1993 jointly de�ne a 16 bit character setwhich encompasses most of the world's writing system. UTF-8, one of UCS transformation formats, hasbeen developed for the compatibility between the 16-bit characters and many applications and protocols forthe US-ASCII characters. For more information regarding the UTF-8 format, see File System Safe UCSTransformation Format (UTF-8), X/Open Preliminary Speci�cation, X/Open Company Ltd., DocumentNumber: P316. 5

3.2 Method-level Modi�cationTo address the limitation of class-level modi�cation, method-level modi�cation replaces amethod with a related method without making use of the class hierarchy structure. Thisapproach provides more exibility in that it can be used even when the method is �nal oris accessed through an interface, but requires more complicated modi�cations of methodreference and method invoking instructions.Before getting into more details, we show a brief description of a �eld and a methoddescriptor in Java class �le format. The �eld descriptor represents the type of a class orinstance variable. For example, the descriptor of an int instance variable is simply I. Table1 shows the meaning of some �eld descriptors.Descriptor TypeC characterI integerZ booleanL<classname>; an instance of the classTable 1: The meaning of the �eld descriptorThe Method descriptor represents the parameters that the method takes and the valuethat it returns. A parameter descriptor represents zero or more �eld types. A returndescriptor represents a �eld type or V. The character V indicates that the method returnsno value(void). For example, the method descriptor for the method void foo (Threadt, int i) is (Ljava/lang/Thread;I)V.Before explaining how method invoking instructions are modi�ed, we also show how amethod is compiled into a class �le through the following example, which gives you theintuituion about what bytecodes look like.The methodvoid foo (Thread t, int i) ft.setPriority (i);gcompiles toMethod public foo(Ljava/lang/Thread;I)Vpush Ljava/lang/Thread;I)vpush Iinvokevirtual Thread.setPriority(I)V6

We are going to explain method-level modi�cation with this example, trying to replaceThread.setPriority(I)V with a more restrictive method, for instance, called Safe$-Thread.setPriority(Ljava/lang/Thread;I)V, which does not allow an applet to havehigher priority than a new upper limit de�ned in class Safe$Thread. Since the new safe-guarding method invokes the instance method of class Thread, a reference to an instanceof class Thread should be passed to the new method. For instance, t.setPriority(5)becomes Safe$Thread.setPriority(t,5). The new method takes priority of type in-teger as one of its arguments, and compares it with its upper limit. If the argumentis higher, the argument is set to the upper limit. Eventually, the new method invokesThread.setPriority(I)V with the veri�ed argument.3.2.1 Method Reference Modi�cationA method of a class (a static method) or of a class instance (an instance method) is repre-sented by a constant pool entry tagged as CONSTANT Methodref. The CONSTANT Methodrefentry refers to the CONSTANT Class entry, representing the class of which the method isa member, and the CONSTANT NameAndType entry, representing the name and descrip-tor of the method, as shown in Figure 3(a). In our example, the CONSTANT Class entryand the CONSTANT NameAndType entry refer to the CONSTANT Uft8 entries representingjava/lang/Thread, setPriority, and (I)V, respectively.Since a new class, Safe$Thread, appears, we should add a new CONSTANT Uft8 en-try representing a string for the new class name, and another new CONSTANT Class en-try referencing the new CONSTANT Uft8 entry. Then the CONSTANT Methodref entry ismodi�ed to refer to the new CONSTANT Class entry instead of an old CONSTANT Classentry which is representing class java/lang/Thread. Since a method descriptor changes,we also need to add a CONSTANT Uft8 entry representing a symbolic name for the newmethod descriptor, (Ljava/lang/Thread;I)V. Then the CONSTANT NameAndType entryis modi�ed to refer to the new CONSTANT Uft8 entry for the method descriptor. Now theCONSTANT Methodref entry represents a new method, Safe$Thread.setPriority(Lja-va/lang/Thread;I)V, as shown in Figure 3(b).3.2.2 Method Invoking Instruction Modi�cationAmong various Java Virtual Machine instructions implementing method invocations, weare interested in invokevirtual for an instance method invocation and invokestatic fora class(static) method invocation in this example. Both instructions take as an argumentan index to a CONSTANT Methodref constant pool entry, but their operand stacks aredi�erent.The instance method invocation is set up by �rst pushing a reference to the instancewhich the method belongs to onto the operand stack. The method invocation's argumentsare then pushed. Figure 4(a) shows the operand stack and instruction sequences for the7

11 31

121111

(I)V

setPriority

101

101

111

31
21

java/lang/Thread101

setPriority

(I)V121

Safe$Thread

201

(Ljava/lang/Thread;I)V

31

21

101

111

121

203

202

201

111

11

11

20331

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

java/lang/Thread

202

CONSTANT_Class

CONSTANT_NameAndType

CONSTANT_Methodref

CONSTANT_Utf8

CONSTANT_Utf8

CONSTANT_Utf8

entry

entry

entry

CONSTANT_Class

CONSTANT_Methodref

CONSTANT_NameAndType

CONSTANT_Utf8

CONSTANT_Utf8

CONSTANT_Utf8

CONSTANT_Utf8

CONSTANT_Utf8

CONSTANT_Class

entry

entry

entry

entry

entry

entry

entry

entry

entry

(a) reference to

(b) reference to

Thread.setPriority(I)V

Safe$Thread.setPriority(Ljava/lang/Thread;I)V

entry

entry

entry

Figure 3: Method-level modi�cation substitutes method reference8

Itop push instance Ljava/lang/Thread;

Ljava/lang/Thread; push argument I

top

 Operand Stack

 Operand Stack

I

Ljava/lang/Thread; push argument I

invokevirtual

push instance Ljava/lang/Thread;

invokestatic

(argument)

(argument)

(argument)

(instance)

#21

#21

(b) Class method invocation of

(a) Instance method invocation of Thread.setPriority(I)V

Safe$Thread.setPriority(Ljava/lang/Thread;I)VFigure 4: Operand stack and instruction sequences for method invoking instructionsinstance method call to Thread.setPriority(I)V. The argument of invokevirtual is theindex in Figure 3(a).The class method invocation requires only arguments to be pushed onto the operandstack. The operand stack and instruction sequences for the instance method call to Safe$-Thread.setPriority(Ljava/lang/Thread;I)V are shown in Figure 4(b). The argumentof invokestatic is the index in Figure 3(b).While the operand stacks and push instructions and their arguments in Figure 4(a) and(b) are the same, the instruction for method invocation is di�erent. Hence, the new methodSafe$Thread.setPriority(Ljava/lang/Thread;I)V can be added into the bytecode pro-gram with a change from invokevirtual to invokestatic.In this section, we covered the details of how the two bytecode modi�cation techniqueswork. While class-level modi�cation requires a simple modi�cation in the constant pool,method-level modi�cation requires bytecode instruction modi�cations as well as constantpool modi�cations. Essentially, class-level modi�cation requires only 5-35% of computationof method-level modi�cation depending on the relative size of the constant pool. However,class-level modi�cation can not be applied to �nal classes or interfaces which method-levelmodi�cation may be applied to. 9

4 Examples for Applet SecurityIn this section, we outline several examples of using bytecode modi�cation technique forprotecting against malicious attacks mentioned in Section 2.4.1 Window Consuming AttackAn applet can crash the system by creating more windows than the windowing system canhandle. To protect against this resource consuming attack, the safety mechanism shouldkeep track of window creation.A Java library class, Frame, handles an optionally resizable top-level window. Theconstructor methods create a window. The key to the solution to this attack is to disallowan applet to invoke the constructor methods more than a certain number of times.Since Frame is not �nal, a subclass Safe$Frame can be generated, in such a way thatSafe$Frame can monitor and control every window generation. Safe$Frame can createwindows using the constructor methods of Frame while counting the current number ofopen windows. It should not create a window if the number of windows exceeds its ownlimit. Class-level modi�cation is used to substitute references to Frame with references toSafe$Frame. This technique may also restrict window size and window positions.4.2 Email Forging AttackAn applet is able to disclose the user's con�dential information through email, while itsweb server is running an SMTP mail daemon. To prevent access to this covert channel, theapplet should not be able to connect to port 25 on the web server.A Java library class, Socket, implements a socket for interprocess communication overthe network. The constructor methods create the socket and connect it to the speci�edhost and port. Since we want to put restrictions on the constructor methods, we shouldbe familiar with how constructor method invocation is implemented in the Java VirtualMachine(JVM).JVM class instances are created using the JVM's new instruction. Once the class instancehas been created and its instance variables have been initialized to their default values, aninstance initialization method of the new class instance(<init>) is invoked. At the levelof the JVM, a constructor appears as a method with the special compiler-supplied name<init>. For example:Socket create() freturn new Socket(host name, port number);g 10

compiles toMethod java.net.Socket create()0 new #1 Class java.net.Socket3 dup4 getfield Field this.host name java.lang.String7 getfield Field this.port number I10 invokespecial #4 Method java.net.Socket.<init>(Ljava/-lang/String;I)V13 areturninvokespecial is the Java Virtual Machine instruction for instance initialization methodinvocations. It invokes instance methods requiring special handling, such as superclass, pri-vate, or instance initialization methods.Since Socket is a �nal class in the browser, we replace the constructor methods throughmethod-level modi�cation. Our static safe method, Safe$Socket.init, which is a classmethod, can monitor and control every socket connection. Safe$Socket.init establishesthe socket connection upon every request excluding a request to port 25, and return a newsocket object. It refuses the request to port 25. Safe$Socket.init takes the same argumenttype as whatever the constructor of Socket takes, but returns a di�erent return type sinceit returns the new socket object. So references to Socket.<init>(Ljava/lang/String;I)Vare replaced with references to Safe$Socket.init(Ljava/lang/String;I)Ljava/net/Socket;.Since Safe$Socket.init is a static method, we replace invokespecialwith invokestatic.In addition, we should remove a socket object created by new from the stack, since the newmethod returns a socket object. The modi�ed codes are as follows:Method java.net.Socket create()0 new #1 Class java.net.Socket3 pop4 getfield Field this.host name java.lang.String7 getfield Field this.port number I10 invokestatic #4 Method Safe$Socket.<init>(Ljava/lang/-String;I)Ljava/lang/Socket;13 areturn4.3 URL Spoo�ng AttackAn applet can spoof a user with a fake URL display on the status line. This spoo�ng attackis protected by checking the consistency between the URL displayed and the URL fromwhich a Web page is actually to be loaded.A Java library interface, AppletContext, de�nes the methods that allow an appletto interact with the context in a Web browser or an applet viewer. The showDocument11

method requests that the browser or applet viewer show the Web page indicated by theURL argument. The showStatus method displays text in the Web browser or appletviewer's status line. Safe$AppletContext.showStatus, which is our static safe method forthe showStatus method, saves the current text in addition to displaying it so that anotherour safe method, Safe$AppletContext.showDocument, can refer to the text later. WhenSafe$AppletContext.showDocument is invoked, it �rst examines whether or not the URLargument is equals to the text which is currently displayed on the status line. If so, themethod requests the browser to bring the Web page indicated by the URL argument. Ifnot, the method displays the URL argument on the status line, instead of passing on therequest. In the latter case, the users may notice the inconsistency, and take an appropriateaction. In general, the users can get the Web page loaded with one more mouse click. Thisguarantees that the users bring a new Web page with its URL displayed on the status line.Its positive side e�ect is that it displays the URL when the URL is not available.Since the AppletContext interface is not inheritable, the two interface methods mustbe replaced through the method-level modi�cation. References to AppletContext.show-Status(S)V and AppletContext.showDocument(Ljava/net/URL;)V is substituted withreferences to Safe$AppletContext.showStatus(S)V and Safe$AppletContext.showDocu-ment(Ljava/net/URL;)V respectively.invokeinterface is the instruction for invoking an interface method. Since the in-terface methods are substituted with the static methods, invokeinterface is also re-placed with invokestatic. Since invokestatic does not have the last two operands ofinvokeinterface, the two operands should be assigned to the nop instruction.4.4 Annoying Sound AttackAn applet can annoy the user with never-ending sounds. To prevent this annoyance attack,the user should be allowed to turn sounds o�. The solution is to keep track of every soundobject.A Java library interface, AudioClip, describes the essential methods for playing a sound.AppletContext.getAudioClip() and Applet.getAudioClip() both return an object thatimplements this interface. The loop method of the object starts playing the audio clip ina loop, and the stop method stops playing the audio clip. The attack is implemented bylooping the sound, but never stopping it.Whenever an applet invokes the loop method of an object, the safety mechanism opensa window in which the users can turn o� the sound, and keeps the object in order to invokethe stop method of the object when the users want to turn it o�. Figure 5 shows a controlwindow over a sound object.Since the AudioClip interface is not inheritable, the safety mechanism uses the method-level modi�cation. There are twomethods to be replaced. References to AudioClip.loop()Vand AudioClip.stop()V are substituted with references to Safe$AudioClip.loop()V and12

Figure 5: A pop-up window for controlling a sound objectSafe$AudioClip.stop()V respectively. As above, invokeinterface is replaced with invokestatic,with the two extra arguments replaced by nop's.We can extend this idea of bringing up a user interface to perform other forms ofmonitoring. For example, we could use our techniques to watch and control some internalvariables in a variety of Java objects. For example, users might have a window that listsall threads and locks, and be allowed to kill threads. Or the window might be able to listall windows that have been created, and how big they are. Users could even be allowed tochange (public) variables and call methods, making this a way to debug or experiment withapplets.5 Performance ResultsOur safety mechanism imposes the extra overhead of inserting safeguarding code into appletsand executing the additional safeguarding code. To evaluate the performance of our safetymechanism, we implemented and measured a prototype of our system which consists ofsafeguarding classes, an HTTP client and an HTTP proxy server.The HTTP client is a Java program which sends a request to a web server, receivesits reply from the server, and measures the time it takes to receive the reply. Our HTTPproxy server, written in Python, performs forwarding of messages between client and webserver, as well as transformation of applets. Our HTTP client was running on a Sun Ultra1 Model 170 which has one 170MHZ Ultrasparc processor, and our proxy server a SunUltra Enterprise 3000 which has two 248MHZ Ultrasparc processors. Both machines are on10Mbit/s Ethernet links. We ran each test 1500 times to measure the performance of oursafety mechanism. 13

5.1 Encapsulation OverheadWe evaluated the overhead of encapsulating Java classes in terms of loading time. Wetreated each Java class loaded from the network as untrusted, and encapsulated all ofits bytecode. The proxy server performs the encapsulation while the classes are beingloaded into the web browser. The encapsulation overhead increases the time it takes forthe classes to be transferred to the browser. Table 2 shows the time(Tencapsulation) it takesto encapsulate the classes. It shows that Tencapsulation is linearly proportional to the size ofthe Java class.Class size Encapsulating Loading time Loading time OverheadTime (sec) w/o encapsulation w/ encapsulation1K .024 .225 .249 10%10K .231 .226 .457 102%20K .438 .244 .682 180%30K .642 .261 .903 246%40K .874 .285 1.159 307%50K 1.350 .316 1.666 427%100K 2.652 .457 3.109 580%150K 4.686 .570 5.256 822%200K 6.336 .658 6.994 962%250K 7.963 .797 8.760 999%Table 2: Encapsulation OverheadSince it is hard to measure the loading time using the browser, we use our HTTPclient instead. The loading time is de�ned as the time to transfer the request to the webbrowser(Trequest), plus the time for the server to process the request(Tserver), plus the timeit takes the browser to receive the reply(Treply). It does not include the time it takes forthe browser to verify applets before displaying them. Table 2 also shows the loading timewhen the encapsulation is not applied. It increases by the proportion of the network speed.Now, let us consider how Tencapsulation a�ects the loading time. We de�ne the encap-sulation overhead is: TencapsulationTencapsulation+Trequest+Tserver+Treply : Table 2 shows the overhead. Wetested class �les up to 250K, a reasonable upper limit.2 The measured cost of encapsulat-ing an applet is substantial. Though Tencapsulation and the loading time increase linearly,the overhead also increases linearly. While analyzing the overhead, we realized that ouroverhead mainly results from the proxy being written in Python. Python is an interpretedlanguage which is easy to work with, but can be 100 times slower than C code for this kindof program, where individual bytes in the bytecode are being examined and modi�ed, as2The current Java compiler javac turned out to be unable to compile Java source �les whose bytecodesize is bigger than 260-270 Kbytes. It ends up with java.lang.OutOfMemoryError.14

0

2

4

6

8

10

0 50 100 150 200 250
Java Class Size (K)

Lo
ad

in
g

T
im

e
(s

ec
) w/ encapsulation

w/o encapsulation

Figure 6: Encapsulation overheadshown in the Appendix. It the proxy server were to be rewritten in C, the encapsulatingoverhead would be minor.5.2 Safeguarding Code Execution OverheadWe evaluated the cost of running safeguarding code in terms of executing time. We imple-mented four kinds of safeguarding classes which are explained in Section 4 and measuredthe execution overheads respectively. The safeguarding code was running on a Sun Ultra1 Model 170 with Netscape NavigatorTM Gold 3.01. Table 3 shows the overhead of eachsafeguarding code.Safeguarding code OverheadSafe$Frame for Window Attacks 4%Safe$Socket for Network Accesses 4%Safe$AppletContext for URL Spoo�ng 5%Safe$AppletContext for Sound Object Control 55%Table 3: Execution OverheadThe safeguarding code falls into two general categories. The �rst type performs ad-ditional security checks and raise an exception if the check fails. Safeguarding codes forwindow attacks, network accesses, and URL spoo�ng are included in this group. As shownin the table, the security checks against those attacks can be done with a 4% overhead.15

The other types keeps track of an object and provides control over it. This protects againstboth faulty programming and malicious attacks that loses control of the resource. Ourexperimental data show that such a problem may be handled with a half execution timeoverhead.6 Related WorkThere are three general approaches which have been proposed for the safe execution of mo-bile code. Lucco, et al., introduced software fault isolation [13] for transforming untrustedmobile code so that it can not escape its fault domain. They showed that memory accessescould be encapsulated with a 5-30% slowdown. Java uses a simple sandbox security modelfor executing untrusted applets in a restricted execution environment. This sandbox modelwas supposed to prohibit untrusted applets from using any sensitive system services, butfailed to do even with small implementation errors [3]. Malkhi, et al., proposed a conceptof playground(sandbox) [8] for executing untrusted mobile code on a remote protecteddomain(machine), called playground. Prior to execution the applet is transformed to usethe downloading user's web browser as a graphics terminal for its input and output. Theway in which the applet is transformed is class-level modi�cation explained in Section 3.1.They just substituted the names of AWT classes to the names of the representative stubs ofthe corresponding remote AWT classes. As long as the AWT classes are all inheritable andhave no �nal method, the class-level modi�cation is good for this approach. Our approachis related to software fault isolation. We encapsulate applets through bytecode modi�cation,in order to perform more security and sanity checks and provide controls over objects whichhappen to be inaccessible.Language semantics can be used to enforce safety by guaranteeing that a program can'ta�ect resources that it can't name [2]. However, such semantics should be extended toinclude the exact conditions and requirements that a security protocol should satisfy, suchas resource consumption or information about communication. Necula and Lee introducedproof-carrying code [11], where the mobile code carries a proof that it complies with certaininvariants or requirements. This can be treated as an e�ort to provide a formal methodto specify and check the extended semantics. Research is underway to provide the formalmethod.Another approach for securing hosts from mobile code is to import and run only trustedmobile code from the network. For example, digital signature mechanism enables a userto download applets written by only trusted authors. Princeton research group proposeda Java Filter [1] for preventing untrusted applets from entering the user's computer. Auser can download Java applets only from trusted servers using the Java Filter. For thebrowser to employ the Java �lter, they made changes to the browser's class library whichis the class �le of the AppletClassLoader. Firewalls can be used to �lter out all outsideapplets [9], while allowing trusted internal applets to run. A few techniques are consideredto try to block Java applets at the �rewall. One idea is to look for <applet> tags in the16

downloaded stream and delete or replace such tags. The �rewall should scan almost all thedi�erent mechanisms(HTML, FTP, gopher, mail, news) which can be used to deliver appletsby encapsulating them properly. This technique imposes a great deal of tra�c loads on the�rewall. Also Javascript can be used to build <applet> tags on the y. Although thereis no such tags in the HTML document, the browser's executing of Javascript will causethem to be inserted at the time the document is viewed. Another idea is to detect Javaclass �les at the �rewall by a magic byte sequence that is required at the beginning of everyclass �le or by their name which will end in .class. However, this technique can not detectclass �les which are passed through an encrypted (SSL) connection, which will make themindistinguishable from ordinary �les to the �rewall, or are a part of compressed archive(Jaror Zip). This idea is also used at the proxy for bytecode modi�cation, so our proxy su�ersfrom the same limitations. However, if bytecode modi�cation were incorporated into thebrowser or virtual machines, these limitations would not apply.7 ConclusionThis paper presented a technique for modifying bytecode programs, through which usersmay customize the behavior of applets, and its prototype implementation for protectingagainst certain kinds of hazardous run-time behavior. Our safety system transforms appletsthrough bytecode modi�cation, in order to perform additional security and sanity checks andprovide control over inaccessible objects. We showed through some examples that bytecodemodi�cation may address security concerns regarding resource consuming, email-forging,URL spoo�ng, and annoyance attacks.The encapsulating overhead shown in Section 5 seems considerable, but it results pri-marily from the Python proxy server. As an interpreted language, Python can be 100 timesslower than C code where individual bytes in the bytecode are being examined and mod-i�ed. If the proxy server were to be rewritten in C, the encapsulating overhead would beminor. Other experimental performance results show that encapsulated code for additionalsecurity checks is executed with a 5% slowdown, and code for controling inaccessible objectswith a 55% slowdown.Although we presented our technique in the context of the Java security model, webelieve that it certainly has a wider range of applicability than the simple security-relatedexamples presented in this paper. In the future, we plan to explore ways to utilize thetechnique in other settings, such as interacting with normally inaccessible objects.References[1] Dirk Balfanz and Edward W. Felten. A Java Filter. Technical Report 97-567, Depart-ment of Computer Science, Princeton University, 1997.17

[2] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson Modula-3language de�nition. SIGPLAN Notices, 27(8), August 1992.[3] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From Hotjava toNetscape and beyond. In Proceedings of the 1996 IEEE Symposium on Security andPrivacy, May 1996.[4] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web spoo�ng:An Internet Con Game. Technical Report 540-96, Department of Computer Science,Princeton University, February 1997.[5] Mark LaDue. Hostile applets home page. http://www.rstcorp.com/hostile-applets/index.html.[6] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. AddisonWisley, 1996.[7] Gary McGraw and Edward W. Felten. Java Security: Hostile Applets, Holes, andAntidotes. John Wiley & Sons, 1997.[8] Dahlia Malkhi, Michael Reiter, and Avi Rubin. Secure Execution of Java Applets usinga Remote Playground.[9] David M. Martin Jr., Sivaramakrishnan Rajagopalan, and Aviel D. Rubin. BlockingJava Applets at the Firewall. In Proceedings of the 1997 Internet Society Symposiumon Network and Distributed System Security, February 1997.[10] Nimisha V. Mehta and Karen R. Sollins. Expanding and Extending the Security Fea-tures of Java. In Proceedings of the 7th USENIX Security Symposium, January 1998.[11] G.C. Necula and Peter Lee. Safe kernel extensions with run-time checking. In Proceed-ings of the 2nd Symposium on Operating Systems Design and Implementation, October1996.[12] The Java Language Environment: A White Paper. Sun Microsystems Computer Com-pany, May 1995.[13] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. E�cientSoftware-Based Fault Isolation. In Proceedings of the 14th Symposium on OperatingSystems Principles, December 1993.AppendixComparison between the Performance of C and PythonWe implemented a bubble sort algorithm in C and Python to compare their performance.Table 4 and Figure 7 show the CPU time in sorting hundreds of variable-length words using18

0

50

100

150

200

250

300

350

0 400 800 1200 1600 2000
The Number of Words

C
P

U
 T

im
e

(s
ec

)

C

Python

Figure 7: A program in C is much faster than in Python.C and Python programs respectively. In this example, we may say that a program in C is100 times faster than in Python.Word Number CPU time in C CPU time in Python200 .02 2.10400 .08 9.79600 .16 24.35800 .25 45.921000 .41 74.221200 .61 120.771400 .82 150.731600 .98 192.971800 1.26 252.342000 1.60 305.40Table 4: A program in C is much faster than in Python.With the data in Table 4, we can estimate the encapsulating time when code for encapsu-lating is written in C. Based on this comparison, Figure 8 shows the estimated encapsulatingoverhead. 19

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
Java Class Size (K)

Lo
ad

in
g

T
im

e
(s

ec
) w/o encapsulation

w/ encapsulation

Figure 8: If the proxy were to be rewritten in C, the encapsulating overhead would beminor.
20

