Java Bytecode Modification and Applet Security*

Insik Shinf John C. Mitchell*

ishin@cs.stanford.edu mitchell@cs.stanford.edu

Computer Science Department
Stanford University
Stanford, CA 94305

Abstract

While the Java Virtual Machine includes a bytecode verifier that checks bytecode
programs before execution, and a bytecode interpreter that performs run-time tests
such as array bounds and null-pointer checks, Java applets may still behave in ways
that are annoying or potentially harmful to users. For example, applets may mount
denial-of-service attacks, forge email or display misleading information in order to trick
users. With these concerns in mind, we present techniques that may be used to insert
additional run-time tests into Java applets. These techniques may be used to restrict
applet behavior or, potentially, insert code appropriate to profiling or other monitoring
efforts. The main techniques are class-level modification, involving subclassing non-final
classes, and method-level modification, which may be used when control over objects
from final classes is desired.

1 Introduction

The Java Language [12] has proven useful for a variety of purposes, including system de-
velopment and the addition of “active content” to web pages. Although previous language
implementations, such as Pascal and Smalltalk systems, have used intermediate bytecode,
the use of bytecode as a medium of exchange places Java bytecode in a new light. To protect
against execution of erroneous or potentially malicious code, the Java Virtual Machine ver-
ifies code properties before execution and performs additional checks at run time. However,
these tests will not protect against certain forms of undesirable run-time behavior, such
as denial-of-service attacks, irritating audio sounds, or violation of conventions regarding

*submitted as a research paper on language design and implementation, analysis and design methods,
software engineering practices, experienced with object-oriented applications and systems, or security.

Tcontact: Tel: 650-723-9445

fcontact: Tel: 650-723-8634, Fax: 650-725-4671

hypertext links. Moreover, users cannot easily customize the tests that are performed since
these are built into the Java Virtual Machine.

The goal of our work is to develop methods for enforcing applet properties, in a manner
that may be customized easily. In this paper, we propose a technique, called bytecode
modification, through which we put restrictions on applets by inserting additional bytecode
instructions that will perform the necessary run-time tests. These additional instructions
may monitor and control resource usage, limit applet functionality, or provide control over
inaccessible objects. While our techniques bear some relation to software fault isolation [13],
we check different properties and our code operations are specifically tailored to the file
structure and commands of the Java Language. Our technique falls into two parts: class-
level modification and method-level modification. In class-level modification, references to
one class are modified to refer to another class. Since this method uses the class inheritance,
it is simple and fast, but can not be applied to final classes and interfaces. In these cases,
method-level modification is used since it may be applied on a method-by-method basis
without regard to class hierarchy restrictions.

We have implemented these techniques in an HTTP proxy server that modifies classes
before they are received by the browser. Qur proxy server is controlled by a user interface
that runs as a Java applet and may be configured to block access to a specific sites, redirect
requests for special Java classes or eliminate tagged advertisements.

In Section 2, we discuss several example Java applet attacks that are outside the scope
of the current Java verifier and security model. We explain the bytecode modification
techniques in Section 3 and present some examples in Section 4. Experimental performance
data appears in Section 5, with comparison to related work on safe execution of Java applets
in Section 6. We conclude in Section 7.

2 Java Applet Safety

Before describing a series of techniques for modifying Java bytecode programs, we give
some motivating examples of hazardous or undesirable Java applets. Each of the problems
outlined in this section can be eliminated or contained using our approach.

2.1 Denial of Service Attack

The Java Virtual Machine provides little protection against denial of service attacks. An
applet can make the system unstable by monopolizing CPU time, allocating memory until
the system runs out, or starving other threads and system processes. For example, an applet
may create huge black windows on the screen in such a way that the users cannot access
other parts of the screen, or it may open a large number of windows [5]. Many machines
have limits on the number of windows that can be open at one time and may crash if these
limits are exceeded. Since the safety of the Java runtime system may be threatened by

inordinate system resource use, it is useful to have some mechanism to monitor and control
resource usage.

2.2 Disclosure of Confidential Information Attack

Most browsers such as Navigator, Internet Explorer and HotJava, provide a network security
mode which allows an applet to connect to the web server from which it was loaded. In
spite of this security mode, an applet can send some confidential information out through
various covert channels. A possible third-party channel is available with the URL redirect
feature. Normally, an applet may instruct the browser to load any page on the web. An
attacker’s server could record the URL as a message, then redirect the browser to the
original destination [3]. Another channel is available with an ability that an applet can
send out an email message to any machine on the Internet [7]. If the web server is running
an SMTP mail daemon, the applet can interact with sendmail after connecting to port 25
on the web server. This allows a hostile applet to forge email. One way to prevent this
form of email forgery is to disallow connections to port 25.

Time-delayed access to files also can be used as a covert channel [10]. Specifically,
if an applet, A, with access to private information is prohibited from accessing the net,
information can still be sent out by another applet, B, which shares a file with applet
A. Inter-applet communications using storage channels can be detected by monitoring the
actions of applets through logging facilities.

2.3 Spoofing Attack

In a spoofing attack, an attacker creates a misleading context in order to trick a user into
making an inappropriate security-relevant decision [4]. Some applets display the URL that
will be accessed when the the mouse is held over a graphic or link. By convention, the URL
is shown in a specific position on the status line. If an applet displays a fake URL, the user
can be misled. This could allow an applet to mislead a user into connecting to a site that
is hazardous in some way. Fortunately, this spoofing attack can be controlled by enforcing
conventions about the URL displayed on the status line.

2.4 Annoyance Attack

An applet can annoy users with a very noisy sound which never ends. This form of sound
attack exploits a useful feature of Java, the ability to play sound in the background. To
eliminate an annoying sound, however, users typically must kill the thread playing sound,
disable the audio, or quit the browser. All of these can be inconvenient. Another possible
annoyance attack is to make the browser visit a given web site over and over, popping up a
new copy of the browser each time. One way to manage annoying sounds is to provide the

ability to turn the sound off. To do so, the Java runtime system must monitor and control
objects with sound.

3 Java Bytecode Modification

This paper presents a safety mechanism for Java applets that is sufficient to solve the
problems summarized above. The basic idea is to put restrictions on applets by inserting
safeguarding code. In the examples we have implemented and tested, safeguarding code
may monitor and control resource usage as well as limit the functionality of applets. This
approach is a form of software fault isolation [13], adapted to the specific structure and
representation of Java bytecode programs.

Our safety mechanism substitutes one executable entity, such as a class or a method,
with a related executable entity that performs additional run-time tests. For instance,
a class such as Window can be replaced with a more restrictive class Safe$Window that
performs additional security and sanity checks. (We use the prefix Safe$ to indicate one of
our safe classes.) This safety mechanism must be applied before the applet is executed. For
convenience in developing a proof of concept, applets are currently modified within an HTTP
proxy server that sits between a web server and a client browser. This implementation does
not require any changes in the web server, Java Virtual Machine or web browser. Since
applets and the browser are not notified of changes in the applet, subsequent requests for
safeguarded executable entities may be issued to the web server, which does not have them.
This problem is handled by having the proxy redirect these requests to cites where the
safeguarding entities are actually stored.

The following sections explain how modified executable entities are inserted in Java
bytecode. The modifications may be divided into two general forms, class-level and method-
level modifications.

3.1 Class-level Modification

A class such as Window can be replaced with a subclass of Window (which will be called
Safe$Window in this example) that restricts resource usage and functionality. For example,
Safe$Window’s constructor method can put a limit on how many windows can be open on
the screen. The method allows new windows to be created until the number of windows
exceeds the limit. If the limit is exceeded, the method throws an exception indicating that
too many windows are open. Since Safe$Window is a subtype of Window, type Safe$Window
can appear anywhere type Window is expected. Hence, the applet should not notice the
change, unless it attempts to create windows exceeding the limit.

This example of class-level substitution is done by merely substituting references to class
Window with references to class Safe$Window. In Java, all references to strings, classes,
fields, and methods are resolved through indices into the constant pool of the class file [6],

=~ -=| classnameindex CONSTANT _Class entry

class name CONSTANT _Utf8 entry

CONSTANT POOL

Figure 1: A class is represented with two entries in the constant pool

N v 11
~22| 10 ~ S| 101 ~
: : —
101f— - 101 -
java/awt/Window Safe$Window
Before After

Figure 2: Class-level modification substitutes class reference

where their symbolic names are stored. Therefore, it is the constant pool that should be
modified in a Java class file. In more detail, two entries are used to represent a class in the
constant pool. A class is represented by a constant pool entry tagged as CONSTANT _Class
which refers to a CONSTANT _Uft8 entry for a UTF-8 ! string representing a fully qualified
name of the class, as shown in Figure 1.

If we replace a class name of a CONSTANT _Uft8 entry, Window, with a new class name,
Safe$Window, the CONSTANT _Class entry will represent the new class, Safe$Window, as
shown in Figure 2.

Class-level substitution requires a simple modification of a constant pool entry, since it
takes advantage of the property of class inheritance. Obviously, however, the use of class
inheritance prevents this approach from being applied to final classes or interfaces.

'The Unicode Standard, version 1.1, and ISO/IEC 10646-1:1993 jointly define a 16 bit character set
which encompasses most of the world’s writing system. UTF-8, one of UCS transformation formats, has
been developed for the compatibility between the 16-bit characters and many applications and protocols for
the US-ASCII characters. For more information regarding the UTF-8 format, see File System Safe UCS
Transformation Format (UTF-8), X/Open Preliminary Specification, X/Open Company Ltd., Document
Number: P316.

3.2 Method-level Modification

To address the limitation of class-level modification, method-level modification replaces a
method with a related method without making use of the class hierarchy structure. This
approach provides more flexibility in that it can be used even when the method is final or
is accessed through an interface, but requires more complicated modifications of method
reference and method invoking instructions.

Before getting into more details, we show a brief description of a field and a method
descriptor in Java class file format. The field descriptor represents the type of a class or
instance variable. For example, the descriptor of an int instance variable is simply I. Table
1 shows the meaning of some field descriptors.

Descriptor Type

C character
I integer
7 boolean

L<clagsname>; an instance of the class

Table 1: The meaning of the field descriptor

The Method descriptor represents the parameters that the method takes and the value
that it returns. A parameter descriptor represents zero or more field types. A return
descriptor represents a field type or V. The character V indicates that the method returns
no value(void). For example, the method descriptor for the method void foo (Thread
t, int i) is (Ljava/lang/Thread;I)V.

Before explaining how method invoking instructions are modified, we also show how a
method is compiled into a class file through the following example, which gives you the
intuituion about what bytecodes look like.

The method

void foo (Thread t, int i) {
t.setPriority (i);

}

compiles to

Method public foo(Ljava/lang/Thread;I)V
push Ljava/lang/Thread;I)v
push I
invokevirtual Thread.setPriority(I)V

We are going to explain method-level modification with this example, trying to replace
Thread.setPriority(I)V with a more restrictive method, for instance, called Safe$-
Thread.setPriority(Ljava/lang/Thread;I)V, which does not allow an applet to have
higher priority than a new upper limit defined in class Safe$Thread. Since the new safe-
guarding method invokes the instance method of class Thread, a reference to an instance
of class Thread should be passed to the new method. For instance, t.setPriority(5)
becomes Safe$Thread.setPriority(t,5). The new method takes priority of type in-
teger as one of its arguments, and compares it with its upper limit. If the argument
is higher, the argument is set to the upper limit. FEventually, the new method invokes
Thread.setPriority(I)V with the verified argument.

3.2.1 Method Reference Modification

A method of a class (a static method) or of a class instance (an instance method) is repre-
sented by a constant pool entry tagged as CONSTANT _Methodref. The CONSTANT _Methodref
entry refers to the CONSTANT _Class entry, representing the class of which the method is
a member, and the CONSTANT _NameAndType entry, representing the name and descrip-
tor of the method, as shown in Figure 3(a). In our example, the CONSTANT _Class entry
and the CONSTANT _NameAndType entry refer to the CONSTANT _Uft8 entries representing
java/lang/Thread, setPriority, and (I)V, respectively.

Since a new class, Safe$Thread, appears, we should add a new CONSTANT _Uft8 en-
try representing a string for the new class name, and another new CONSTANT _Class en-
try referencing the new CONSTANT _Uft8 entry. Then the CONSTANT _Methodref entry is
modified to refer to the new CONSTANT _Class entry instead of an old CONSTANT _Class
entry which is representing class java/lang/Thread. Since a method descriptor changes,
we also need to add a CONSTANT _Uft8 entry representing a symbolic name for the new
method descriptor, (Ljava/lang/Thread;I)V. Then the CONSTANT_NameAndType entry
is modified to refer to the new CONSTANT _Uft8 entry for the method descriptor. Now the
CONSTANT _Methodref entry represents a new method, Safe$Thread.setPriority(Lja-
va/lang/Thread;I)V, as shown in Figure 3(b).

3.2.2 Method Invoking Instruction Modification

Among various Java Virtual Machine instructions implementing method invocations, we
are interested in invokevirtual for an instance method invocation and invokestatic for
a class(static) method invocation in this example. Both instructions take as an argument
an index to a CONSTANT _Methodref constant pool entry, but their operand stacks are
different.

The instance method invocation is set up by first pushing a reference to the instance
which the method belongs to onto the operand stack. The method invocation’s arguments
are then pushed. Figure 4(a) shows the operand stack and instruction sequences for the

\

\
AN

N

11
L 21

~ =
=

/31

!
' 101

111

121

101 =
11 — 31 ~
111 — 121 —
j aval |l ang/ Thr ead
setPriority
(v

(a) referencetoThread. setPriority(l)V

11

101

.21

~ =
=7

202 31 ™~

/31

111 — 203

AN

! '
' 101

j aval | ang/ Thread

111

AN
setPriority
N\

121

(1)V \

201

202

201

\
Saf e$Thr ead \l
Y

U

203

(Ljaval/l ang/ Thread; 1)V

CONSTANT_Class entry
CONSTANT_Methodref entry

CONSTANT_NameAndType entry

CONSTANT_Utf8 entry
CONSTANT_Utf8 entry

CONSTANT_Utf8 entry

CONSTANT _Class entry
CONSTANT_Methodref entry
CONSTANT_NameAndType entry

CONSTANT_Utf8 entry
CONSTANT_Utf8 entry
CONSTANT_Utf8 entry
CONSTANT_Utf8 entry

CONSTANT _Class entry
CONSTANT_Utf8 entry

(b) referencetoSaf e$Thr ead. set Pri ority(Ljaval/l ang/ Thread;)V

Figure 3: Method-level modification substitutes method reference

top | push instance Ljavallang/Thread; (instance)

Ljavallang/Thread; push argument | (argument)

.............. i nvokevi rtual #21

Operand Stack
(@) Instance method invocation of Thread.setPriority(1)V

top | push instance Ljavallang/Thread; (argument)

Ljavallang/Thread; push argument | (argument)

.............. i nvokest ati c #21

Operand Stack
(b) Class method invocation of Safe$Thread.setPriority(Ljavallang/Thread;1)V

Figure 4: Operand stack and instruction sequences for method invoking instructions

instance method call to Thread.setPriority(I)V. The argument of invokevirtual is the
index in Figure 3(a).

The class method invocation requires only arguments to be pushed onto the operand
stack. The operand stack and instruction sequences for the instance method call to Safe$-
Thread.setPriority(Ljava/lang/Thread;I)V are shown in Figure 4(b). The argument
of invokestatic is the index in Figure 3(b).

While the operand stacks and push instructions and their arguments in Figure 4(a) and
(b) are the same, the instruction for method invocation is different. Hence, the new method
Safe$Thread.setPriority(Ljava/lang/Thread;I)V can be added into the bytecode pro-
gram with a change from invokevirtual to invokestatic.

In this section, we covered the details of how the two bytecode modification techniques
work. While class-level modification requires a simple modification in the constant pool,
method-level modification requires bytecode instruction modifications as well as constant
pool modifications. Essentially, class-level modification requires only 5-35% of computation
of method-level modification depending on the relative size of the constant pool. However,
class-level modification can not be applied to final classes or interfaces which method-level
modification may be applied to.

4 Examples for Applet Security

In this section, we outline several examples of using bytecode modification technique for
protecting against malicious attacks mentioned in Section 2.

4.1 Window Consuming Attack

An applet can crash the system by creating more windows than the windowing system can
handle. To protect against this resource consuming attack, the safety mechanism should
keep track of window creation.

A Java library class, Frame, handles an optionally resizable top-level window. The
constructor methods create a window. The key to the solution to this attack is to disallow
an applet to invoke the constructor methods more than a certain number of times.

Since Frame is not final, a subclass Safe$Frame can be generated, in such a way that
Safe$Frame can monitor and control every window generation. Safe$Frame can create
windows using the constructor methods of Frame while counting the current number of
open windows. It should not create a window if the number of windows exceeds its own
limit. Class-level modification is used to substitute references to Frame with references to
Safe$Frame. This technique may also restrict window size and window positions.

4.2 Email Forging Attack

An applet is able to disclose the user’s confidential information through email, while its
web server is running an SMTP mail daemon. To prevent access to this covert channel, the
applet should not be able to connect to port 25 on the web server.

A Java library class, Socket, implements a socket for interprocess communication over
the network. The constructor methods create the socket and connect it to the specified
host and port. Since we want to put restrictions on the constructor methods, we should
be familiar with how constructor method invocation is implemented in the Java Virtual

Machine(JVM).

JVM class instances are created using the JVM’s new instruction. Once the class instance
has been created and its instance variables have been initialized to their default values, an
instance initialization method of the new class instance(<init>) is invoked. At the level
of the JVM, a constructor appears as a method with the special compiler-supplied name
<init>. For example:

Socket create() {
return new Socket(host name, port_number);
}

10

compiles to

Method java.net.Socket create()

0 new #1 Class java.net.Socket

3 dup

4 getfield Field this.host name java.lang.String
7 getfield Field this.port_ number I

10 invokespecial #4 Method java.net.Socket.<init>(Ljava/-
lang/String;I)V
13 areturn

invokespecialis the Java Virtual Machine instruction for instance initialization method
invocations. It invokes instance methods requiring special handling, such as superclass, pri-
vate, or instance initialization methods.

Since Socket is a final class in the browser, we replace the constructor methods through
method-level modification. Our static safe method, Safe$Socket.init, which is a class
method, can monitor and control every socket connection. Safe$Socket.init establishes
the socket connection upon every request excluding a request to port 25, and return a new
socket object. It refuses the request to port 25. Safe$Socket.init takes the same argument
type as whatever the constructor of Socket takes, but returns a different return type since
it returns the new socket object. So references to Socket.<init>(Ljava/lang/String;I)V
are replaced with references to Safe$Socket.init(Ljava/lang/String;I)Ljava/net/Socket;.

Since Safe$Socket.init is a static method, we replace invokespecial with invokestatic.
In addition, we should remove a socket object created by new from the stack, since the new
method returns a socket object. The modified codes are as follows:

Method java.net.Socket create()

0 new #1 Class java.net.Socket

3 pop

4 getfield Field this.host name java.lang.String
7 getfield Field this.port_ number I

10 invokestatic #4 Method Safe$Socket.<init>(Ljava/lang/-
String;I)Ljava/lang/Socket;
13 areturn

4.3 URL Spoofing Attack

An applet can spoof a user with a fake URL display on the status line. This spoofing attack
is protected by checking the consistency between the URL displayed and the URL from
which a Web page is actually to be loaded.

A Java library interface, AppletContext, defines the methods that allow an applet
to interact with the context in a Web browser or an applet viewer. The showDocument

11

method requests that the browser or applet viewer show the Web page indicated by the
URL argument. The showStatus method displays text in the Web browser or applet
viewer’s status line. Safe$AppletContext.showStatus, which is our static safe method for
the showStatus method, saves the current text in addition to displaying it so that another
our safe method, Safe$AppletContext.showDocument, can refer to the text later. When
Safe$AppletContext.showDocument is invoked, it first examines whether or not the URL
argument is equals to the text which is currently displayed on the status line. If so, the
method requests the browser to bring the Web page indicated by the URL argument. If
not, the method displays the URL argument on the status line, instead of passing on the
request. In the latter case, the users may notice the inconsistency, and take an appropriate
action. In general, the users can get the Web page loaded with one more mouse click. This
guarantees that the users bring a new Web page with its URL displayed on the status line.
Its positive side effect is that it displays the URL when the URL is not available.

Since the AppletContext interface is not inheritable, the two interface methods must
be replaced through the method-level modification. References to AppletContext.show-
Status(S)V and AppletContext.showDocument(Ljava/net/URL;)V is substituted with
references to Safe$AppletContext.showStatus(S)Vand Safe$AppletContext.showDocu-
ment (Ljava/net/URL;)V respectively.

invokeinterface is the instruction for invoking an interface method. Since the in-
terface methods are substituted with the static methods, invokeinterface is also re-
placed with invokestatic. Since invokestatic does not have the last two operands of
invokeinterface, the two operands should be assigned to the nop instruction.

4.4 Annoying Sound Attack

An applet can annoy the user with never-ending sounds. To prevent this annoyance attack,
the user should be allowed to turn sounds off. The solution is to keep track of every sound
object.

A Java library interface, AudioClip, describes the essential methods for playing a sound.
AppletContext.getAudioClip() and Applet.getAudioClip() both return an object that
implements this interface. The loop method of the object starts playing the audio clip in
a loop, and the stop method stops playing the audio clip. The attack is implemented by
looping the sound, but never stopping it.

Whenever an applet invokes the loop method of an object, the safety mechanism opens
a window in which the users can turn off the sound, and keeps the object in order to invoke
the stop method of the object when the users want to turn it off. Figure 5 shows a control
window over a sound object.

Since the AudioClip interface is not inheritable, the safety mechanism uses the method-
level modification. There are two methods to be replaced. References to AudioClip.loop()V
and AudioClip.stop()V are substituted with references to Safe$AudioClip.loop()V and

12

E‘Eﬁ ul:liu clip Control Uinduw

Audioclip: beep.au

|LIRL |http:,-",-"mnw-'-leland.stanfurd.edu,"”ishi

playl loop | stop |
\E."ﬁ] Unsigned Java Applet Windaw

Figure 5: A pop-up window for controlling a sound object

Safe$AudioClip.stop()Vrespectively. Asabove, invokeinterfaceis replaced with invokestatic,
with the two extra arguments replaced by nop’s.

We can extend this idea of bringing up a user interface to perform other forms of
monitoring. For example, we could use our techniques to watch and control some internal
variables in a variety of Java objects. For example, users might have a window that lists
all threads and locks, and be allowed to kill threads. Or the window might be able to list
all windows that have been created, and how big they are. Users could even be allowed to
change (public) variables and call methods, making this a way to debug or experiment with
applets.

5 Performance Results

Our safety mechanism imposes the extra overhead of inserting safeguarding code into applets
and executing the additional safeguarding code. To evaluate the performance of our safety
mechanism, we implemented and measured a prototype of our system which consists of
safeguarding classes, an HTTP client and an HTTP proxy server.

The HTTP client is a Java program which sends a request to a web server, receives
its reply from the server, and measures the time it takes to receive the reply. Our HTTP
proxy server, written in Python, performs forwarding of messages between client and web
server, as well as transformation of applets. Our HTTP client was running on a Sun Ultra
1 Model 170 which has one 170MHZ Ultrasparc processor, and our proxy server a Sun
Ultra Enterprise 3000 which has two 248MHZ Ultrasparc processors. Both machines are on
10Mbit/s Ethernet links. We ran each test 1500 times to measure the performance of our
safety mechanism.

13

5.1 Encapsulation Overhead

We evaluated the overhead of encapsulating Java classes in terms of loading time. We
treated each Java class loaded from the network as untrusted, and encapsulated all of
its bytecode. The proxy server performs the encapsulation while the classes are being
loaded into the web browser. The encapsulation overhead increases the time it takes for
the classes to be transferred to the browser. Table 2 shows the time(T%,capsutation) it takes
to encapsulate the classes. It shows that Tepcqpsulation s linearly proportional to the size of
the Java class.

Class size Encapsulating Loading time Loading time Overhead
Time (sec) w/o encapsulation w/ encapsulation

1K .024 225 .249 10%
10K 231 226 457 102%
20K 438 244 682 180%
30K 642 261 903 246%
40K 874 285 1.159 307%
50K 1.350 316 1.666 427%
100K 2.652 457 3.109 580%
150K 4.686 570 5.256 822%
200K 6.336 .658 6.994 962%
250K 7.963 797 8.760 999%

Table 2: Encapsulation Overhead

Since it is hard to measure the loading time using the browser, we use our HTTP
client instead. The loading time is defined as the time to transfer the request to the web
browser(7}c yest), plus the time for the server to process the request(Zseryer), plus the time
it takes the browser to receive the reply(7cpy,). It does not include the time it takes for
the browser to verify applets before displaying them. Table 2 also shows the loading time
when the encapsulation is not applied. It increases by the proportion of the network speed.

Now, let us consider how Tepcopsulation affects the loading time. We define the encap-

. . T R ;
sulation overhead is: = , ”{ﬁ“p““l““OT" = . Table 2 shows the overhead. We
encapsulatzon‘l’ Tequest‘l‘ servert reply

tested class files up to 250K, a reasonable upper limit.2 The measured cost of encapsulat-
ing an applet is substantial. Though T, apsuiation and the loading time increase linearly,
the overhead also increases linearly. While analyzing the overhead, we realized that our
overhead mainly results from the proxy being written in Python. Python is an interpreted
language which is easy to work with, but can be 100 times slower than C code for this kind
of program, where individual bytes in the bytecode are being examined and modified, as

2The current Java compiler javac turned out to be unable to compile Java source files whose bytecode
size is bigger than 260-270 Kbytes. It ends up with java.lang.OutOfMemoryError.

14

[EEN
o
1

- | —®— w/ encapsulation

oo

—O— w/0 encapsulation

B »

Loading Time (sec)
N

o

0 50 100 150 200 250
Java Class Size (K)

Figure 6: Encapsulation overhead

shown in the Appendix. It the proxy server were to be rewritten in C, the encapsulating
overhead would be minor.

5.2 Safeguarding Code Execution Overhead

We evaluated the cost of running safeguarding code in terms of executing time. We imple-
mented four kinds of safeguarding classes which are explained in Section 4 and measured
the execution overheads respectively. The safeguarding code was running on a Sun Ultra
1 Model 170 with Netscape Navigator’™™ Gold 3.01. Table 3 shows the overhead of each
safeguarding code.

Safeguarding code Overhead
Safe$Frame for Window Attacks 4%
Safe$Socket for Network Accesses 4%
Safe$AppletContext for URL Spoofing 5%

Safe$AppletContext for Sound Object Control 55%

Table 3: Execution Overhead

The safeguarding code falls into two general categories. The first type performs ad-
ditional security checks and raise an exception if the check fails. Safeguarding codes for
window attacks, network accesses, and URL spoofing are included in this group. As shown
in the table, the security checks against those attacks can be done with a 4% overhead.

15

The other types keeps track of an object and provides control over it. This protects against
both faulty programming and malicious attacks that loses control of the resource. Our
experimental data show that such a problem may be handled with a half execution time
overhead.

6 Related Work

There are three general approaches which have been proposed for the safe execution of mo-
bile code. Lucco, et al., introduced software fault isolation [13] for transforming untrusted
mobile code so that it can not escape its fault domain. They showed that memory accesses
could be encapsulated with a 5-30% slowdown. Java uses a simple sandbox security model
for executing untrusted applets in a restricted execution environment. This sandbox model
was supposed to prohibit untrusted applets from using any sensitive system services, but
failed to do even with small implementation errors [3]. Malkhi, et al., proposed a concept
of playground(sandbox) [8] for executing untrusted mobile code on a remote protected
domain(machine), called playground. Prior to execution the applet is transformed to use
the downloading user’s web browser as a graphics terminal for its input and output. The
way in which the applet is transformed is class-level modification explained in Section 3.1.
They just substituted the names of AW'T classes to the names of the representative stubs of
the corresponding remote AWT classes. As long as the AW classes are all inheritable and
have no final method, the class-level modification is good for this approach. Our approach
is related to software fault isolation. We encapsulate applets through bytecode modification,
in order to perform more security and sanity checks and provide controls over objects which
happen to be inaccessible.

Language semantics can be used to enforce safety by guaranteeing that a program can’t
affect resources that it can’t name [2]. However, such semantics should be extended to
include the exact conditions and requirements that a security protocol should satisfy, such
as resource consumption or information about communication. Necula and Lee introduced
proof-carrying code [11], where the mobile code carries a proof that it complies with certain
invariants or requirements. This can be treated as an effort to provide a formal method
to specify and check the extended semantics. Research is underway to provide the formal
method.

Another approach for securing hosts from mobile code is to import and run only trusted
mobile code from the network. For example, digital signature mechanism enables a user
to download applets written by only trusted authors. Princeton research group proposed
a Java Filter [1] for preventing untrusted applets from entering the user’s computer. A
user can download Java applets only from trusted servers using the Java Filter. For the
browser to employ the Java filter, they made changes to the browser’s class library which
is the class file of the AppletClassLoader. Firewalls can be used to filter out all outside
applets [9], while allowing trusted internal applets to run. A few techniques are considered
to try to block Java applets at the firewall. One idea is to look for <applet> tags in the

16

downloaded stream and delete or replace such tags. The firewall should scan almost all the
different mechanisms(HTML, F'TP, gopher, mail, news) which can be used to deliver applets
by encapsulating them properly. This technique imposes a great deal of traffic loads on the
firewall. Also Javascript can be used to build <applet> tags on the fly. Although there
is no such tags in the HTMIL document, the browser’s executing of Javascript will cause
them to be inserted at the time the document is viewed. Another idea is to detect Java
class files at the firewall by a magic byte sequence that is required at the beginning of every
class file or by their name which will end in .class. However, this technique can not detect
class files which are passed through an encrypted (SSL) connection, which will make them
indistinguishable from ordinary files to the firewall, or are a part of compressed archive(Jar
or Zip). This idea is also used at the proxy for bytecode modification, so our proxy suffers
from the same limitations. However, if bytecode modification were incorporated into the
browser or virtual machines, these limitations would not apply.

7 Conclusion

This paper presented a technique for modifying bytecode programs, through which users
may customize the behavior of applets, and its prototype implementation for protecting
against certain kinds of hazardous run-time behavior. Qur safety system transforms applets
through bytecode modification, in order to perform additional security and sanity checks and
provide control over inaccessible objects. We showed through some examples that bytecode
modification may address security concerns regarding resource consuming, email-forging,
URL spoofing, and annoyance attacks.

The encapsulating overhead shown in Section 5 seems considerable, but it results pri-
marily from the Python proxy server. As an interpreted language, Python can be 100 times
slower than C code where individual bytes in the bytecode are being examined and mod-
ified. If the proxy server were to be rewritten in C, the encapsulating overhead would be
minor. Other experimental performance results show that encapsulated code for additional
security checks is executed with a 5% slowdown, and code for controling inaccessible objects
with a 55% slowdown.

Although we presented our technique in the context of the Java security model, we
believe that it certainly has a wider range of applicability than the simple security-related
examples presented in this paper. In the future, we plan to explore ways to utilize the
technique in other settings, such as interacting with normally inaccessible objects.

References

[1] Dirk Balfanz and Edward W. Felten. A Java Filter. Technical Report 97-567, Depart-
ment of Computer Science, Princeton University, 1997.

17

[2] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson Modula-3
language definition. SIGPLAN Notices, 27(8), August 1992.

[3] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From Hotjava to
Netscape and beyond. In Proceedings of the 1996 IEEFE Symposium on Security and
Privacy, May 1996.

[4] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web spoofing:
An Internet Con Game. Technical Report 540-96, Department of Computer Science,
Princeton University, February 1997.

[5] Mark LaDue. Hostile applets home page. http://www.rstcorp.com/hostile-
applets/index.html.

[6] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison
Wisley, 1996.

[7] Gary McGraw and Edward W. Felten. Java Security: Hostile Applets, Holes, and
Antidotes. John Wiley & Sons, 1997.

[8] Dahlia Malkhi, Michael Reiter, and Avi Rubin. Secure Execution of Java Applets using
a Remote Playground.

[9] David M. Martin Jr., Sivaramakrishnan Rajagopalan, and Aviel D. Rubin. Blocking
Java Applets at the Firewall. In Proceedings of the 1997 Internet Society Symposium
on Network and Distributed System Security, February 1997.

[10] Nimisha V. Mehta and Karen R. Sollins. Expanding and Extending the Security Fea-
tures of Java. In Proceedings of the Tth USENIX Security Symposium, January 1998.

[11] G.C. Necula and Peter Lee. Safe kernel extensions with run-time checking. In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Implementation, October
1996.

[12] The Java Language Environment: A White Paper. Sun Microsystems Computer Com-
pany, May 1995.

[13] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the 14th Symposium on Operating
Systems Principles, December 1993.

Appendix

Comparison between the Performance of C and Python

We implemented a bubble sort algorithm in C and Python to compare their performance.
Table 4 and Figure 7 show the CPU time in sorting hundreds of variable-length words using

18

350

—0—C

300
250

—e— Python

200
150
100

CPU Time (sec)

al
o

[e N T T W T e W e W N P W N Ee W B Ve V']
\9

o)
400 800 1200 1600 2000
The Number of Words

o
o‘llllllllllllll

Figure 7: A program in C is much faster than in Python.

C and Python programs respectively. In this example, we may say that a program in C is
100 times faster than in Python.

Word Number CPU time in C CPU time in Python

200 .02 2.10

400 .08 9.79

600 .16 24.35
800 .25 45.92
1000 41 74.22
1200 .61 120.77
1400 .82 150.73
1600 98 192.97
1800 1.26 252.34
2000 1.60 305.40

Table 4: A program in C is much faster than in Python.

With the data in Table 4, we can estimate the encapsulating time when code for encapsu-
lating is written in C. Based on this comparison, Figure 8 shows the estimated encapsulating

overhead.

19

1
— " | —O— w/o encapsulation /l
é 08 I —e—w encapsulation
o 0.6
£ !
|_
£ -
B 0.2
o |
4 /
0 L

0 50 100 150 200 250
Java Class Size (K)

Figure 8: If the proxy were to be rewritten in C, the encapsulating overhead would be

minor.

20

